• Title/Summary/Keyword: Cu contact

Search Result 406, Processing Time 0.028 seconds

Solidification Characteristics of Al-Cu Polycrystalline Ribbons in Planar Flow Casting (PFC법에 있어서의 Al-Cu 다결정리본의 응고특성)

  • Lee, Kyung-Ku;Lee, Sang-Mok;Hong, Chun-Ryo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.408-415
    • /
    • 1995
  • Polycrystalline Al-Cu ribbons were produced by planar flow casting(PFC). Solidification behavior and microstructual changes of the ribbons have been investigated as a function of ribbon thickness and processing parameters. The solidification front velocity, V varies within the ribbon, decreasing with increasing the distance, S from the wheel-contact surface, as $V=17.6S^{-1}$. In Al-4.5wt%Cu alloy, rapid decrease in solidification velocity toward the free surface causes a change in solidification morphology from planar to cellular, and finally, to dendritic. The length and inclination of columnar grains solidified with planar front were related to the wheel velocity. The transition from particulate degenerate eutectic structure to regular lamellar eutectic structure was observed to be caused by a difference of the relative growth velocites of ${\alpha}-Al$ and ${\theta}$ during solidification in the Al-Cu eutectic alloy.

  • PDF

Ni/Cu metallization for low cost high efficiency PERC cells (Ni/Cu 전극을 적용한 고효율 실리콘 태양전지의 제작 및 특성 평가)

  • Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1019-1022
    • /
    • 2004
  • 본 연구에서는 PERC(passivated emitter and rear cell) 구조를 갖는 고효율 단결정 실리콘 태양전지에 도금법을 적용하여 Ni/Cu 전극을 형성하였다. 고효율 태양전지는 제작 비용이 높고 공정이 복잡하기 때문에 실용화에 적용이 어려운 단점이 있다. 따라서 태양전지의 효율은 그대로 유지하고, 공정을 간단하게 줄이면서 저가격화 할 수 있는 방법에 대한 연구가 필요하다. 기존의 고효율 실리콘 태양전지에 가장 일반적으로 적용되고 있는 Ti/Pd/Ag 전극의 경우 고가의 증착 장비를 이용할 뿐만 아니라 재료 자체도 매우 고가의 물질이 사용되고 있다. 도금법으로 Ni/cu 전극을 형성하여 태양전지를 제작한 결과 공정을 간소화하고 비용을 절감 하면서, 20% 이상의 고효율 태양전지를 얻을 수 있었다.

  • PDF

Cf/C-Cu- New Sliding Electrical Contact Materials

  • Ran, Liping;Yi, Maozhong;Peng, Ke;Yang, Lin;Ge, Yicheng
    • Carbon letters
    • /
    • v.10 no.2
    • /
    • pp.94-96
    • /
    • 2009
  • [ $C_f/C-Cu$ ]composites were fabricated by infiltrating molten Cu into different $C_f/C$ preforms prepared by chemical vapor infiltration, resin impregnation and carbonization. The microstructure and properties of the composites were investigated. The results show that Cu in the composites filled the pores and showed network-like distribution. Compared with homemade J204 brush material and certain grade pantograph slider from abroad, the composites have higher flexural strength and better electrical conductivity. The friction and wear properties of the composites are better than that of J204, and closed to that of the abroad material.

Thermal Decomposition of Octanethiolate Self-Assembled Monolayers on Cu(111) in UHV

  • Sung, Myung-M.;Yun, Won-J.;Lee, Sun-S.;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.610-612
    • /
    • 2003
  • Octanethiol ($CH_3(CH_2)_7SH$) based self-assembled monolayer on Cu(111) in ultra-high vacuum has been examined using x-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD), intergrated desorption mass spectrometry (IDMS), and contact angle analysis. The results show that the octanethiolate monolayers similar to those on gold are formed on Cu(111). The monolayers are stable up to temperatures of about 480 K. Above 495 K the monolayers decompose via the γ-hydrogen elimination mechanism to yield 1-octene in the gas phase. The thiolate head groups on the copper surface change to Cu₂S following the decomposition of hydrocarbon fragments in the monolayers at about 605 K.

A New Catalytic System for Methylchlorosilanes(MCS) Synthesis (Methylchlorosilanes 합성촉매에 관한 연구)

  • Cho, Chul Kun;Han, Kee Do
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.804-810
    • /
    • 1997
  • A new catalyst system composed of a main catalyst(copper chloride) and promotors of zinc chloride, tin, and cadminum showed excellent performances in the MCS synthesis from silicon and methylchloride. The mixture of catalyst/silicon(5/95), Zn/Cu=0.1, Sn/Cu=0.001, and Cd/Cu=0.001 was mixed in a slurry phase and activated into the contact mass, then it was used for MCS synthesis. The average selectivity was 92% at the silicon consumption of 92% and reaction rate was 175(g-MCS/hr.kg-silicon) at conversion of silicon.

  • PDF

Interfacial Reactions of Sn-Ag-Cu solder on Ni-xCu alloy UBMs (Ni-xCu 합금 UBM과 Sn-Ag계 솔더 간의 계면 반응 연구)

  • Han Hun;Yu Jin;Lee Taek Yeong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.84-87
    • /
    • 2003
  • Since Pb-free solder alloys have been used extensively in microelectronic packaging industry, the interaction between UBM (Under Bump Metallurgy) and solder is a critical issue because IMC (Intermetallic Compound) at the interface is critical for the adhesion of mechanical and the electrical contact for flip chip bonding. IMC growth must be fast during the reflow process to form stable IMC. Too fast IMC growth, however, is undesirable because it causes the dewetting of UBM and the unstable mechanical stability of thick IMC. UP to now. Ni and Cu are the most popular UBMs because electroplating is lower cost process than thin film deposition in vacuum for Al/Ni(V)/Cu or phased Cr-Cu. The consumption rate and the growth rate of IMC on Ni are lower than those of Cu. In contrast, the wetting of solder bumps on Cu is better than Ni. In addition, the residual stress of Cu is lower than that of Ni. Therefore, the alloy of Cu and Ni could be used as optimum UBM with both advantages of Ni and Cu. In this paper, the interfacial reactions of Sn-3.5Ag-0.7Cu solder on Ni-xCu alloy UBMs were investigated. The UBMs of Ni-Cu alloy were made on Si wafer. Thin Cr film and Cu film were used as adhesion layer and electroplating seed layer, respectively. And then, the solderable layer, Ni-Cu alloy, was deposited on the seed layer by electroplating. The UBM consumption rate and intermetallic growth on Ni-Cu alloy were studied as a function of time and Cu contents. And the IMCs between solder and UBM were analyzed with SEM, EDS, and TEM.

  • PDF

Preparation and characterization of green adsorbent from waste glass and its application for the removal of heavy metals from well water

  • Rashed, M. Nageeb;Gad, A.A.;AbdEldaiem, A.M.
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.53-71
    • /
    • 2018
  • Waste glass disposal causes environmental problems in the cities. To find a suitable green environmental solution for this problem low cost adsorbent in this study was prepared from waste glass. An effective new green adsorbent was synthesized by hydrothermal treatment of waste glass (WG), followed by acidic activation of its surface by HCl (WGP). The prepared adsorbent was characterized by scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), and BET surface measurement. The developed adsorbent was used for the removal of heavy metals (Cd, Cu, Fe, Pb and Zn) from well water. Batch experiments were conducted to test the ability of the prepared adsorbent for the removal of Cd, Cu, Fe, Pb and Zn from well water. The experiments of the heavy metals adsorption by adsorbent (WGP) were performed at different metal ion concentrations, solution pH, adsorbent dosage and contact time. The Langmuir and Freundlich adsorption isotherms and kinetic models were used to verify the adsorption performance. The results indicated high removal efficiencies (99-100%) for all the studied heavy metals at pH 7 at constant contact time of 2 h. The data obtained from adsorption isotherms of metal ions at different time fitted well to linear form of the Langmuir sorption equation, and pseudo-second-order kinetic model. Application of the resulted conditions on well water demonstrated that the modified waste glass adsorbent successfully adsorbed heavy metals (Cd, Cu, Fe, Pb and Zn) from well water.

A Densification Model for Mixed Metal Powder Under Cold Compaction (냉간압축하에서 혼합 금속분말의 치밀화 모델)

  • Jo, Jang-Hyeok;Jo, Jin-Ho;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2628-2636
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction- was investigated. By mixing the yield functions proposed by Fleck et al. and by Gurson for pure powder in terms o f volume fractions and contact numbers of Cu powder, new mixed yield functions were employed for densification of powder composites under cold compaction. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data and with calculated results from the model of Kim et al. for densification of mixed powder under cold isostatic pressing and cold die compaction. Finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

A Study on the Wear Behavior of the Cu-TiB2 Composites (Cu-TiB2 복합재료의 마모거동에 관한 연구)

  • Kim Jung-Nam;Choi Jong-Un;Kang Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.61-65
    • /
    • 2005
  • The titanium $diboride(TiB_2)$ has high strength(750MPa), high melting point $(3225^{\circ}C)\;and\;10\%$ IACS electrical conductivity. On this account, the dispersion hardening $Cu-TiB_2$ composites(MMCs) are a promising candidate for applications as electrical contact materials. MMCs for electrical contact materials can reduce material cost and resource consumption caused by wear, due to its good mechanical and electrical property. In this study, we attempt to prepare MMCs with various volume fraction and particle size of $TiB_2$ by means of hot extruded and cold drawn process. Dry sliding wear tests were performed on a pin-on-disk type wear tester, sliding against SM45C under the different applied loads. After wear testing, the microstructures of the worn surfaces were observed by SEM and the microhardnesses of the subsurface zone were measured.

A Experimental Study on Wearing Phenomenon of Cu-type Wearing Slider for the Rail Motor Car's Pantograph (집전장치용 동계 주습판의 마모현상에 관한 실험적 연구)

  • Kim, Kyung-Seob
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.224-230
    • /
    • 2012
  • The wearing slider of the rail motor car's pantograph is considerable changed by the type and the material properties. Especially, precipitation and arc influences are main factors decided to life time of wearing slider and contact wire. This study is wearing phenomenon analysis of Cu-type wearing slider with high electric conductivity and resistance arc through experiment by running train. Author observed that wearing phenomenon of Cu-type wearing slider with normal and abnormal wearing characteristics and comparatively analysis precipitation, mileage and weight influences of exchanged Cutype and Fe-type wearing sliders. In this paper result showed that necessity for the application which is the Fe-type of wearing slider had superior wear resisting capacity etc., through tribology approach.