• 제목/요약/키워드: Cu Plate

검색결과 237건 처리시간 0.027초

리플로우 시간에 따른 Pb-free 솔더/Ni 및 Cu 기판 접합부의 전단강도 평가 (Evaluation of Shear Strength for Pb-free Solder/Ni and Cu Plate Joints due to Reflow Time)

  • 하벼리;유효선;양성모;노윤식
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.134-141
    • /
    • 2013
  • Reflow soldering process is essential in electronic package. Reflow process for a long time results from the decrease of reliability because IMC is formed excessively. Solder alloys of Sn-37Pb and Sn-Ag with different kinds of Cu contents (0, 0.5 and 1 wt.%) as compared with Ni and Cu plate joints are investigated according to varying reflow time. The interfaces of solder joints are observed to analyze IMC (intermetallic compound) growth rate by scanning electron microscope (SEM). Shear test is also performed by using SP (Share-Punch) tester. The test results are compared with the solder joints of two different plates (Ni and Cu plate). $Cu_6Sn_5$ IMCs are formed on Cu plate interfaces after reflows in all samples. Ni3Sn4 and $(Cu,Ni)_6Sn_5$ IMCs are also formed on Ni plate interfaces. The IMC layer forms are affected by reflow time and contents of solder alloy. These results show that mechanical strength of solder joints strongly depends on thickness and shape of IMC.

시효처리된 연료전지 집전판용 Matte 주석도금 동판의 고온열화 거동과 비저항변화 (Degradation Behavior and Resistivity Changes After Thermal Aging of Matte Tin-Plated Copper Sheet for Current Collector in Fuel Cell)

  • 김주한;김재훈;구경완;금영범;정귀성;고행진;한상옥
    • 전기학회논문지
    • /
    • 제58권8호
    • /
    • pp.1559-1565
    • /
    • 2009
  • Resistivity changes and intermetallic growth after thermal aging of Matter tin-plated copper sheet for current collector in fuel cell were investigated to survey the diffusion of Cu into Sn in interface and surface. The results show that the intermetallic growth and resistivity depended on thermal aging temperature and dwell time. In Sn plate on a Cu substrate, Cu6Sn5(${\mu}$) and Cu3Sn(${\varepsilon}$) intermetallics layer were formed at plate/substrate interface. Cu6Sn5(${\mu}$) intermetallics layer gradually changed Cu3Sn(${\varepsilon}$). Moreover Cu get through Sn layer and it was diffused in the surface at $200^{\circ}C$. On the other hand, only Cu3Sn(${\varepsilon}$) intermetallics layer were formed at plate/substrate interface at $300^{\circ}C$. Consequently, the intermetallics formation, thermal condition and oxidation of surface, causes increase in the resistivity of Tin-plated copper sheet.

중금속[Cu(II), Zn(II)]의 분리 및 농축을 위한 역삼투 판틀형 모듈의 적용 (Application of Reverse Osmosis Plate and Frame Type for Separation and Concentration Heavy Metal[Cu(II), Zn(II)])

  • 이광현;강병철;이종백;김종팔
    • 한국물환경학회지
    • /
    • 제20권4호
    • /
    • pp.307-312
    • /
    • 2004
  • This study was focused on experiment for the separation and concentration process of Cu(II), Zn(II) solution with the variation of applied pressure and concentration using reverse osmosis plate and frame modules. Rejection coefficient and degree of concentration for Cu(II) component using single and multi-stage reverse osmosis process were showed 96.3~97.8%, 0.044~0.191(in single-stage), 96.3~98.4%, 0.400~2.264(in multi-stage) within the range of experimental condition, respectively. Those of Zn(II) were 93.3~97.1%, 0.019~0.395(in single-stage), 96.3~98.2%, 0.365~1.454(in multi-stage), respectively. Degree of concentration of multi-stage were higher than those of single-stage. Heavy metal[Cu(II), Zn(II)] separation was very efficient in using reverse osmosis plate and frame type modules. Separation efficiency for a mixed solution Cu(II) and Zn(II) was higher than those of each one of Cu(II) and Zn(II).

Al-Si-Cu합금의 용체화 처리 온도에 따른 Al2Cu 용해와 용융 현상 (Dissolution and Melting Phenomenon of Al2Cu according to Solution Treatment Temperature of Al12Si3Cu alloy)

  • 이승관;김정석
    • 열처리공학회지
    • /
    • 제35권1호
    • /
    • pp.1-7
    • /
    • 2022
  • In this study, dissolution and melting phenomenon of the Al2Cu was studied for the high-strength Al-Si-Cu aluminum alloy in automobile component. The Solution heat treatment was performed at 480℃ and 510℃ for 4hours. Microstructure analysis of the specimen was performed using the optical micrograph and scanning electron microscope for qualitative and quantitative analysis of various phases, the chemical composition of secondary phases was achieved by energy dispersive spectroscopy (EDS) and electron probe micro analysis (EPMA). As a result of the electron probe micro analysis, a plate like Al2Cu phase was observed, and eutectic Si phase was observed of a coarsen plate shape. At a temperature of 510, necking phenomenon occurs in a specific part of plate like Al2Cu, and it is segmented and dissolved in the Al matrix. When the temperature of the alloy exceeds the melting point of Al2Cu, incipient melting occurs at the grain boundary of undissolved Cu particles

냉각판으로 제조된 Al-Zn-Mg-Cu계 반응고 알루미늄 합금의 RRA 처리 (RRA Treatment of Semi-Solid Al-Zn-Mg-Cu Al Alloy Fabricated by Cooling Plate)

  • 김대환;심성용;김영화;임수근
    • 한국주조공학회지
    • /
    • 제29권6호
    • /
    • pp.265-269
    • /
    • 2009
  • The optimum RRA heat treating conditions and SCC (stress corrosion cracking) resistance of semi-solid Al-Zn-Mg-Cu alloy fabricated by inclined cooling plate were compared with those of conventional mould cast alloys. The non-stirring method characterized by using a cooling plate can effectively eliminate dendritic structure and form a fine globular semisolid microstructure in as-cast Al-Zn-Mg-Cu alloy and the SCC resistance of semi-solid Al-Zn-Mg-Cu alloy was higher than that of conventional mold cast alloy. Also, after retrogressed treatment at RRA heat treatment of semi-solid Al-Zn-Mg-Cu alloy, retrogressed treatment time has increased more than 10 minutes at $180^{\circ}C$ to recovery the T6 heat treatment strength.

CuO 나노유체를 적용한 판형열교환기 성능에 대한 수치해석적 연구 (Numerical Analysis on the Performance Improvement of Plate Heat Exchanger by Applying to CuO Nanofluid)

  • 함정균;조홍현
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.9-16
    • /
    • 2020
  • In this study, a numerical study was conducted to evaluate the performance improvement when CuO nanofluid was used in the plate heat exchanger. As a result, the heat transfer amount is increased by 5.45% when 2 vol% CuO nanofluid is used. The influence on the CuO nanofluid on the performance of heat exchanger is decreased by increasing the flow rate of working fluid. In addition, the overall heat transfer coefficient using 2 vol% CuO nanofluid decreased compared to the base fluid. However, the pressure drop and the consumption of the pump power is increased as the concentration of CuO nanofluid increased because the increase of the viscosity. These are increased up to 15.4% compared to those of the base fluid. Moreover, the performance index of CuO nanofluid is decreased by 12.6% compared to that of the base fluid.

연료전지 집전판용 주석도금 동판의 열 열화에 따른 금속간화합물 성장 및 비저항 변화 (Resistivity Changes and Intermetallic Growth After Thermal Aging of Matte Tin-Plated Copper Sheet for Current Collector in Fuel Cell)

  • 김재훈;김주한;한상옥;구경완;금영범;정귀성;고행진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.2067_2068
    • /
    • 2009
  • Resistivity changes and intermetallic growth after thermal aging of Matter tin-plated copper sheet for current collector in fuel cell were investigated to survey the diffusion of Cu into Sn in interface and surface. The results show that the intermetallic growth and resistivity depended on thermal aging temperature and dwell time. In Sn plate on a Cu substrate, $Cu_6Sn_5({\mu})$ and $Cu_3Sn({\varepsilon})$ intermetallics layer were formed at plate/substrate interface. $Cu_6Sn_5({\mu})$ intermetallics layer gradually changed $Cu_3Sn({\varepsilon})$. Moreover Cu get through Sn layer and it was diffused in the surface at $200^{\circ}C$. On the other hand, only $Cu_3Sn({\varepsilon})$ intermetallics layer were formed at plate/substrate interface at $300^{\circ}C$. Consequently, the intermetallics formation, thermal condition and oxidation of surface, causes increase in the resistivity of Tin-plated copper sheet.

  • PDF

동피복재법을 이용한 Bi-Sr-Ca-Cu-O 고온초전도 후막 제조 (Fabrication of Cu-Sheathed Bi-Sr-Cu-O High Temperature Superconductor Thick Films)

  • 한상철;성태현;한영희;이준성;정상진
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.22-25
    • /
    • 1999
  • A well oriented Bi-2212 superconductor thick films were fabricated by screen printing with a Cu-free Bi-Sr-Ca-Cu-O powder on a copper plate and heat-treating at 820- $880^{\circ}C$for several minute in low oxygen pressure or are. At minute in low oxygen pressure of air. At , the printing layer partially melted by reaction between the Cu-free precursor by reaction between the Cu-free$870^{\circ}C$ precursor and CuO of the oxidizing copper plate. It is believed that the solid phase is Bi : Sr : Ca : Cu = 2 : 2 : 0 : 1. It is likely that the Bi-2212 superconducting phase is formed at Bi-2212 superconducting phase is formed at Bi-free phase/liquid interface by nucleation and grows.

  • PDF