• Title/Summary/Keyword: Cu Oxide

Search Result 859, Processing Time 0.027 seconds

Preparation, Structure, and Photoemission Studies on the High Temperature Superconductor $YBa_2Cu_{3-x}Ni_xO_{7-{\delta}}$

  • Choy, Jin-Ho;Choe, Won-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권5호
    • /
    • pp.379-383
    • /
    • 1990
  • $YBa_2Cu_{3-x}Ni_xO_{7-{\delta}}$, with x = 0.05, 0.2, 0.4, 0.7 and 1.0 had been prepared by the thermal decomposition of corresponding nitrates. Among them, the sample with x = 0.05 shows above-liquid-$N_2$ temperature superconductivity with $T_c$ of 88.7K. According to the X-ray diffraction analysis, its crystal symmetry was estimated as orthorhombic with the lattice parameters of a = 3.866${\AA}$, b = 3.893${\AA}$, c = 11.715${\AA}$. The chemical composition of the sample was determined by electron probe microanalysis and the chemical composition around its grain boundaries was carefully studied by the X-ray line scanning technique. From the observed binding energy of Ni-$2p_{3/2}$ orbital electron (B.E. = 853 eV) measured by X-ray photoelectron spectroscopy, the valency state of nickel stabilized in $YBa_2Cu_{2.95}Ni_{0.05}O_{7-{\delta}}$ oxide lattice could be determined to be Ni(II).

순티타늄의 교류 불꽃 양극산화층 미세조직에 미치는 양극산화공정변수 및 대기산화온도의 영향 (The Effects of Anodizing Process Parameters and Oxidation Temperature under Atmospheric Environment on Morphology of the Pure Titanium by Alternating Current Arc-anodizing)

  • 양학희;박종성
    • 한국표면공학회지
    • /
    • 제41권1호
    • /
    • pp.16-22
    • /
    • 2008
  • Anodizing to form oxide layers on the pure titanium was performed in the electrolyte containing 1.5M $H_2SO_4$, 0.2M $H_3PO_4$, and 2.5wt.% $CuSO_4$ using the ac-biased arc anodizing technique. Titanium oxide layers anodized with different applied voltages, voltage-elevating rates, and anodizing times were investigated. In addition, thermal oxidation test under an atmospheric environment for the arc-anodized specimens was carried out. The thickness of oxide layers were not affected by the voltage-elevating rates, but increased slightly with the increase of anodizing times. The thickness of oxide layers were increased with the increase of voltages, and increased remarkably in the condition of 200V. The size and number of the pore observed in the center of the porous cell were decreased with increase of applied voltage. From the result of thermal oxidation test, it revealed that oxide layer formed by arc anodizing more effective to prevent oxidation of pure titanium.

The structures and catalytic activities of metallic nanoparticles on mixed oxide

  • 박준범
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.339-339
    • /
    • 2010
  • The metallic nanoparticles (Pt, Au, Ag. Cu, etc.) supported on ceria-titania mixed oxide exhibit a high catalytic activity for the water gas shift reaction ($H_2O\;+\;CO\;{\leftrightarrow}\;H_2\;+\;CO_2$) and the CO oxidation ($O_2\;+\;2CO\;{\leftrightarrow}\;2CO_2$). It has been speculated that the high catalytic activity is related to the easy exchange of the oxidation states of ceria ($Ce^{3+}$ and $Ce^{4+}$) on titania, but very little is known about the ceria titanium interaction, the growth mode of metal on ceria titania complex, and the reaction mechanism. In this work, the growth of $CeO_x$ and Au/$CeO_x$ on rutile $TiO_2$(110) have been investigated by Scanning Tunneling Microscopy (STM), Photoelectron Spectroscopy (PES), and DFT calculation. In the $CeO_x/TiO_2$(110) systems, the titania substrate imposes on the ceria nanoparticles non-typical coordination modes, favoring a $Ce^{3+}$ oxidation state and enhancing their chemical activity. The deposition of metal on a $CeO_x/TiO_2$(110) substrate generates much smaller nanoparticles with an extremely high activity. We proposed a mechanism that there is a strong coupling of the chemical properties of the admetal and the mixed-metal oxide: The adsorption and dissociation of water probably take place on the oxide, CO adsorbs on the admetal nanoparticles, and all subsequent reaction steps occur at the oxide-admetal interface.

  • PDF

전기적 불완전 접촉에 따른 동산화물의 발열 및 아크 특성 (The Heating of Cu-oxide and Arc Properties according to Electrical Poor Contact)

  • 김완수;박상준;황동현
    • 한국안전학회지
    • /
    • 제34권3호
    • /
    • pp.15-20
    • /
    • 2019
  • As industry is progressing and standards of living are improved, the demand of electrical energy is expected to grow 8-9% annually. Therefore, the importance of electrical fire prevention technology with the ability of the power supply is being emphasized. According to the statistics of fire in Korea, fire occurred about 45,000 cases annually, and electrical fire possessed about 20%. The electrical fire by poor contact has increased gradually, can be connected as great fire to secondarily induce short circuit and earth fault. Then analysis of heating causes of electrical connections between copper and copper alloy is needed. Also, detection and analysis algorithm of oxide at copper alloy are necessary. In this research, in order to understand the characteristics of oxide growth with rising resistance and heating, it is demonstrated that the oxide at electrical connections can cause fire due to arcing.

하이드로퀴논 환원제를 사용한 은코팅 구리 플레이크의 제조에서 공정 변수의 영향 (Effects of Process Variables on Preparation of Silver-Coated Copper Flakes Using Hydroquinone Reducing Agent)

  • 오상주;이종현
    • 마이크로전자및패키징학회지
    • /
    • 제24권3호
    • /
    • pp.57-62
    • /
    • 2017
  • 하이드로퀴논 환원제를 사용하는 무전해 은도금 방법으로 은(Ag)코팅 구리(Cu) 플레이크를 제조하는 공정에서 전처리 용액, 반응온도, pH, Ag 도금액 조성 및 주입속도, 펄프농도 등 여러 변수를 변화시켜가며 우수한 품질의 Ag 코팅이 형성되는 공정조건들을 확보하였다. Cu 플레이크 표면의 산화층을 제거하기 위한 효과적인 전처리 용액이 제시되었고, 낮은 반응온도, 4.34 수준의 pH값, 느린 Ag 도금액 주입속도, Ag 도금액에서 증류수 제거, 높은 펄프농도 조건에서 분리형 미세 Ag 입자들의 생성이 억제되고, Cu 표면 커버리지가 우수한 Ag 코팅층이 형성됨을 확인할 수 있었다.

ZnO thin films with Cu, Ga and Ag dopants prepared by ZnS oxidation in different ambient

  • Herrera, Roberto Benjamin Cortes;Kryshtab, Tetyana;Andraca Adame, Jose Alberto;Kryvko, Andriy
    • Advances in nano research
    • /
    • 제5권3호
    • /
    • pp.193-201
    • /
    • 2017
  • ZnO, ZnO: Cu, Ga, and ZnO: Cu, Ga, Ag thin films were obtained by oxidization of ZnS and ZnS: Cu, Ga films deposited onto glass substrates by electron-beam evaporation from ZnS and ZnS: Cu, Ga targets and from ZnS: Cu, Ga film additionally doped with Ag by the closed space sublimation technique at atmospheric pressure. The film thickness was about $1{\mu}m$. The oxidation was carried out at $600-650^{\circ}C$ in air or in an atmosphere containing water vapor. Structural characteristics were investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). Photoluminescence (PL) spectra of the films were measured at 30-300 K using the excitation wavelengths of 337, 405 and 457.9 nm. As-deposited ZnS and ZnS: Cu, Ga films had cubic structure. The oxidation of the doped films in air or in water vapors led to complete ZnO phase transition. XRD and AFM studies showed that the grain sizes of oxidized films at wet annealing were larger than of the films after dry annealing. As-deposited doped and undoped ZnS thin films did not emit PL. Shape and intensity of the PL emission depended on doping and oxidation conditions. Emission intensity of the films annealed in water vapors was higher than of the films annealed in the air. PL of ZnO: Cu, Ga films excited by 337 nm wavelength exhibits UV (380 nm) and green emission (500 nm). PL spectra at 300 and 30 K excited by 457.9 and 405 nm wavelengths consisted of two bands - the green band at 500 nm and the red band at 650 nm. Location and intensities ratio depended on the preparation conditions.

Investigation of Vanadium-based Thin Interlayer for Cu Diffusion Barrier

  • 한동석;박종완;문대용;박재형;문연건;김웅선;신새영
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.41.2-41.2
    • /
    • 2011
  • Recently, scaling down of ULSI (Ultra Large Scale Integration) circuit of CMOS (Complementary Metal Oxide Semiconductor) based electronic devices become much faster speed and smaller size than ever before. However, very narrow interconnect line width causes some drawbacks. For example, deposition of conformal and thin barrier is not easy moreover metallization process needs deposition of diffusion barrier and glue layer. Therefore, there is not enough space for copper filling process. In order to overcome these negative effects, simple process of copper metallization is required. In this research, Cu-V thin alloy film was formed by using RF magnetron sputter deposition system. Cu-V alloy film was deposited on the plane $SiO_2$/Si bi-layer substrate with smooth and uniform surface. Cu-V film thickness was about 50 nm. Cu-V layer was deposited at RT, 100, 150, 200, and $250^{\circ}C$. XRD, AFM, Hall measurement system, and XPS were used to analyze Cu-V thin film. For the barrier formation, Cu-V film was annealed at 200, 300, 400, 500, and $600^{\circ}C$ (1 hour). As a result, V-based thin interlayer between Cu-V film and $SiO_2$ dielectric layer was formed by itself with annealing. Thin interlayer was confirmed by TEM (Transmission Electron Microscope) analysis. Barrier thermal stability was tested with I-V (for measuring leakage current) and XRD analysis after 300, 400, 500, 600, and $700^{\circ}C$ (12 hour) annealing. With this research, over $500^{\circ}C$ annealed barrier has large leakage current. However V-based diffusion barrier annealed at $400^{\circ}C$ has good thermal stability. Thus, thermal stability of vanadium-based thin interlayer as diffusion barrier is good for copper interconnection.

  • PDF

공증발과 열산화로 제조한 Ag-CuO-SnO2 박막에서 미세조직과 CO 가스 감지특성 (Microstructure and CO Gas Sensing Properties of Ag-CuO-SnO2 Thin Films Prepared by Co-Evaporation and Thermal Oxidation)

  • 지인걸;한규석;오재희;고태경
    • 한국세라믹학회지
    • /
    • 제46권4호
    • /
    • pp.429-435
    • /
    • 2009
  • In this study, we investigated microstructure and the CO gas sensing properties of Ag-CuO-$SnO_2$ thin films prepared by co-evaporation and subsequently thermal oxidation at air atmosphere. The sensitivity of a Cu-Sn films, thermally oxidized at $600^{\circ}C$, is strongly affected by the amount of Cu. At Cu:7 wt%-Sn:93 wt%, the film exhibited a maximum sensitivity of ${\sim}2.3$ to CO gas of 1000 ppm at $300^{\circ}C$. In contrast, the sensitivity of a Sn-Ag film did not change significantly with the amount of Ag. An enhanced sensitivity of ${\sim}3.7$ was observed in the film with a composition of Ag:3 wt%-Cu:4 wt%-Sn:93 wt%, when thermally oxidized at $600^{\circ}C$. In addition, this thin film shows a response time of ${\sim}80$ sec and a recovery time of ${\sim}450$ sec to 1000 ppm CO gas. The results demonstrate that the CO sensitivity of the Ag-CuO-$SnO_2$ thin films may be closely associated with coexistence of $SnO_2$ and SnO phase, decrease in average particle size, and a porous microstructure. We also suggest that co-evaporation and followed by thermal oxidation is a very simple and effective method to prepare oxide gas sensor thin films.