• Title/Summary/Keyword: Cu Oxide

Search Result 860, Processing Time 0.047 seconds

The 2nd Stability Appraisement on Cultural Property Material with the Replacing Fumigation Gas of Methyl Bromide II (Methyl Bromide를 대체하는 훈증 가스의 문화재 재질 안정성 평가 II)

  • Kang, Dai-Ill
    • Journal of Conservation Science
    • /
    • v.25 no.4
    • /
    • pp.465-471
    • /
    • 2009
  • In this study, the substitution fumigation gases (15% Ethylene Oxide + 85% HFC 134a, 20% Ethylene Oxide + 80% $CO_2$, 99% Sulfuryl Fluoride + 1% Inert Gas) were applied on the metal, pigment, fabric and paper specimen. The result of the fumigation treatment with 15% Ethylene Oxide + 85% HFC 134a (200g/$m^3$, 48hours) is the color changes (${\Delta}E$) of 1st and 2nd Cu specimens showed significant difference as 3.40, 4.17. On the other hand, other specimens except for Cu showed less than 3.0 in chrominance values. The result with 20% Ethylene Oxide + 80% $CO_2$ (150g/$m^3$, 48hours) is that the color changes (${\Delta}E$) of 1st and 2nd specimens were overall less than 3.0 so that color differences were subtle and hardly recognized with naked eyes. So it is proved that the fumigation treatment with Ethylene Oxide 20% + $CO_2$ 80% is relatively stable on materials in this study. In the case of 99% Sulfuryl Fluoride + 1% Inert Gas (50g/$m^3$, 48hours), the color difference of Lead red ($PbO_4$) of pigment was more than 3.0 that was compared with contrast specimens. But chrominance values in the other specimens were less than 3.0 on average.

  • PDF

Characterization of Ni Oxide Nanofibers by Electrospinning

  • Park, Ju-Yeon;Go, Seong-Wi;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.379.2-379.2
    • /
    • 2016
  • The Ni oxide/PVP nanofibers were synthesized by sol-gel and electrospinning technique. The obtained Ni oxide/PVP (polyvinylpyrrolidone) nanofibers were calcined to remove the PVP compound at 873 and 1173 K. The Ni oxide/PVP nanofibers were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The SEM images showed that the mat form was prepared by calcination of Ni oxide/PVP nanofibers at 873 K. And the crystal structure of Ni oxide at 1173 K was also confirmed by SEM images. XRD results shows the crystallinity of metallic Ni and NiO. TEM images also verified the crystal phase of Ni and Ni oxide. XP spectra revealed that the oxidation state of Ni to conclude the chemical composition of Cu oxide nanofibers.

  • PDF

Preparation of nanocrystalline CuO powders by hydrazine method and their gas sensing characteristics (Hydrazine 법에 의한 CuO 미분말의 합성 및 가스 감응성 평가)

  • Kim, Sun-Jung;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2007
  • CuO is an important transition metal oxide with many practical applications such as catalysts, p-type semiconductor, solar cells, magnetic storage media and cathode materials. In this contribution, nanocrystalline CuO powders were prepared by solution reduction method using copper chloride ($CuCl_{2}{\cdot}2H_{2}O$), hydrazine ($N_{2}H_{4}$) and NaOH and subsequent heat treatment. The gas sensor using nanocrystalline CuO powders showed high sensitivities to acetone and ethanol.

Electrical Contact Property of W-Cu Materials Manufactured from Nanocomposite Powder (초미립 복합분말로 제조된 W-Cu재료의 전기접점 특성)

  • 김태형
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.174-180
    • /
    • 1994
  • Electrical contact property of the W-20wt%Cu contact materials manufactured by liquid phase sintering of nanocomposite W-Cu powders was investigated and discussed in terms of microstructural development during performance test. Nanocomposite powders were prepared by hydrogen reduction of ball milled W-Cu oxide mixture. They underwent complete densification and microstructural homogenization during liquid phase sintering. As a consequence, the W-Cu contacts produced from nanocomposite powders showed superior contact property of lower arc erosion and stable contact resistance. This might be mostly due to the fact that the arc erosion by evaporation of Cu liquid droplets and surface cracking remarkably became weakened. It is concluded that the improvement of anti-arc erosion of the composite specimen is basically attributed to microstructural homogeneity.

  • PDF