• Title/Summary/Keyword: Cu Oxide

Search Result 859, Processing Time 0.023 seconds

Effect of Mixed Grinding on Superconductivity YBaCu Composite Oxide

  • Ryu, Ho-Jin
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.251-256
    • /
    • 1996
  • Effect of mixed grinding with a planetary ball mill of starting materials before heat treatment on the crystal structure and superconduction properties in the YBaCu composite oxide was studied. The size reduction of powders too place in the early stage of grinding, followed by aggregation of the resultant fine particles. The uniformity of the composition in the mixture was improved with grinding, which later decreased in the crystal grain size and well distribution of twin phase in the sintered bodies. The critical current density of the sintered bodies obtained from the mixture ground for 60 minutes showed the maximum value about 150 A/$\textrm{cm}^2$, while critical temperatures were around 90K and were independent of the grinding time.

  • PDF

The study of Synthesis of Dihydropyrimidine for Cardiotropic Drugs Using New Catalysts on the Basis of Nano Cu Oxides (신촉매 나노 구리산화물을 이용한 심혈관 의약품용 Dihydropyrimidine 제조 연구)

  • Uhm Y. R.;Lee M. K.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.441-446
    • /
    • 2005
  • The copper oxide nano powders were synthesized by levitational gas condensation (LGC) method, and were applied to catalyst to fabricate 3,4-dihydropyrimidin-2-(1H)-one. Processes of adsorption of Biginelli reaction reagents on the copper nanooxide surface $Cu_2O{\circ}CuO$ were studied by IR-spectroscopy. It was shown that benzaldehyde coordination, acetoacetic ether on the oxide surface is carried out with participation of carbonyl fragments, urea by N-H bonds which affects positively on the reagents reactivity.

Peculiarities of SHS and Solid State Synthesis of ReBa2Cu3O7-x Materials

  • Soh, Deawha;Natalya, Korobova
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.275-280
    • /
    • 2002
  • The peculiarities of using Self-propagating High-temperature Synthesis (SHS) and solid-stave chase synthesis for production of high temperature superconductor materials were discussed. Oxide superconductors with general formula of $ReBa_2Cu_3O_{7-x}$ (Re=Y, Sm) haute been made by using barium oxide initial powder instead of traditional barium carbonate. Phenomena observed during the grinding of the reactants mixture are presented. Mechano-chemical activation - as a pre-treatment of the reactants mixture - strongly influences the kinetic parameters, the reaction mechanism, and the composition and structure of the final product.

Effect of Post-annealing Treatment on Copper Oxide based Heterojunction Solar Cells (산화물구리 기반 이종접합형 태양전지의 후열처리효과)

  • Kim, Sangmo;Jung, Yu Sup;Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.55-59
    • /
    • 2020
  • Copper Oxide (CuO) films were deposited on the n-type silicon wafer by rf magnetron sputtering for heterojunction solar cells. And then the samples were treated as a function of the annealing temperature (300-600℃) in a vacuum. Their electrical, optical and structural properties of the fabricated heterojunction solar cells were then investigated and the power conversion efficiencies (PCE) of the fabricated p-type copper oxide/n-type Si heterojunction cells were measured using solar simulator. After being treated at temperature of 500℃, the solar cells with CuO film have PCE of 0.43%, Current density of 5.37mA/㎠, Fill Factor of 39.82%.

Texturing of Cu Sheets and Fabrication of Oxide Buffer Layers for YBCO Superconductor Films (YBCO 초전도체막을 위한 Cu 판의 배향화 및 중간 산화층의 제조)

  • Kim, Myeong-Hui;Kim, Eun-Gene;Han, Sang-Chul;Sung, Tae-Hyun;Kim, Sang-Joon;No, Kwang-Soo
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.352-357
    • /
    • 1999
  • The Cu sheets were selected for the substrate of the superconductor films. Pure Cu sheets with the thickness of 50${\mu}$m were fabricated using hot and cold rolling. The Cu sheets were heat treated to induce the biaxial texturing. The z-axis and x-y plane texturing of Cu sheets heat treated at different conditions were analyzed using XRD and a best heat treatment condition for the texturing was selected. ZrO$_2$ film was dip coated on Cu sheets heat treated at the best condition to prevent possible reaction between Cu sheets and YBCO superconductors, to reduce possible cracking due to thermal expansion mismatch and to decrease the lattice mismatch for biaxial texturing. The texturing of the oxide buffer layers were also studied.

  • PDF

A Study on Thermal Properties of Ethylene Glycol Containing Copper Oxide Nanoparticles (산화구리 나노분말을 포함하는 에틸렌글리콜 용액의 열전특성에 관한 연구)

  • Kim, Chang-Kyu;Lee, Gyoung-Ja;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.276-280
    • /
    • 2010
  • In the present work, ethylene glycol-based (EG) copper oxide nanofluids were synthesized by pulsed wire evaporation method. In order to explode the pure copper wire, high voltage of 23 kV was applied to the both ends of wire and argon/oxygen gas mixture was used as reactant gas. EG-based copper oxide nanofluids with different volume fraction were prepared by controlling explosion number of copper wire. From the transmission electron microscope (TEM) image, it was found that the copper oxide nanoparticles exhibited an average diameter about 100 nm with the oxide layer of 2~3 nm. The synthesized copper oxide consists of CuO/$Cu_2O$ phases and the Brunauer Emmett Teller (BET) surface area was estimated to be $6.86\;m^2\;g^{-1}$. From the analyses of thermal properties, it is suggested that viscosity and thermal conductivity of EG-based copper oxide nanofluids do not show temperature-dependent behavior over the range of 20 to $90^{\circ}C$. On the other hand, the viscosity and thermal conductivity of EG-based copper oxide nanofluids increase with volume fraction due to the active Brownian motion of the nanoparticles, i.e., nanoconvection.

Failure Paths of Polymer/Roughened Metal Interfaces under Mixed-Mode Loading (혼합 하중하에서의 고분자/거친금속 계면의 파손경로)

  • Lee Ho-Young;Kim Sung-Ryong
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.322-327
    • /
    • 2004
  • Copper-based leadframe sheets were oxidized in two kinds of hot alkaline solutions to form brown-oxide or black-oxide layer on the surface. The oxide coated leadframe sheets were molded with epoxy molding compound (EMC). After post mold curing, the oxide-coated EMC-leadframe joints were machined to form sandwiched Brazil-nut (SBN) specimens. The SBN specimens were used to measure the fracture toughness of the EMC/leadframe interfaces under mixed-mode (mode I + mode II) loading conditions. Fracture surfaces were analyzed by various equipment to investigate failure path. The results revealed that the failure paths were strongly dependent on the oxide type. In case of brown oxide, hackle-type failure was observed and failure path lay near the EMC/CuO interface with a little inclining to CuO at all case. On the other hand, in case of black oxide, quite different failure path was observed with respect to the distance from the tip of pre-crack and phase angle. Different failures occurred with oxide type is presumed to be due to the difference in microstructure of the oxides.

Effect of Brown Oxide Formation on the Fracture Toughness of Leadframe/EMC Interface (Brown Oxide 형성이 리드프레임/EMC 계면의 파괴인성치에 미치는 영향)

  • Lee, H.Y.;Yu, J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.4
    • /
    • pp.531-537
    • /
    • 1999
  • A copper based leadframe was oxidized in brown-oxide forming solution, then the growth characteristics of brown oxide and the effect of brown-oxide formation on the adhesion strength of leadframe to epoxy molding compound (EMC) were studied by using sandwiched double cantilever beam (SDCB) specimens. The brown oxide is composed of fine acicular CuO, and its thickness increased up to ~150 nm within 2 minutes and saturated. Bare leadframe showed alomost no adhesion to EMC, while once the brown-oxide layer formed on the Surface of leadframe, the adhesion strength increased up to ~80 J/$\m^2$ within 2 minutes. Correlation between oxide thickness, $\delta$ and the adhesion strength in terms of interfacial fracture toughness, $G_{c}$ was linear. Considering the above results, we might conclude that the main adhesion mechanism of brown-oxide treated leadframe to EMC is mechanical interlocking, in which fine acicular CuO plays a major role.e.

  • PDF

Synthesis of Cu Nanoparticles through a High-Speed Chemical Reaction between Cuprous Oxide and Sulfuric Acid and Enhancement of Dispersion by 3-Roll Milling (아산화동과 황산간의 고속 화학반응에 의한 미세 Cu 입자의 합성과 삼본밀에 의한 분산성 개선)

  • Chee, Sang-Joo;Lee, Jong-Hyun;Hyun, Chang-Yong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.125-133
    • /
    • 2016
  • With the aim of using a filler material in a conductive paste, fine Cu nanoparticles were synthesized through the high-speed chemical reaction between cuprous oxide ($Cu_2O$) powder and sulfuric acid in distilled water. Under external temperature of $7^{\circ}C$, sulfuric acid concentration of 48%, and $Cu_2O$ amount of 30 g, the $Cu_2O$ particles were eliminated and slightly aggregated Cu nanoparticles were synthesized. Futhermore, Cu nanoparticles of 224 nm, in which the aggregation between particles was obviousiy much suppressed, were synthesized with the choice of an additive. In the particle sample, occasionally there are coarse particles formed by the aggregation of fine nanoparticles and weak linkages between the nanoparticles. However, the coarse particles were destroyed and the linkages were broken after mixing with a resin formulation, indicating the behavior of untangling the aggregation between nanoparticles.

Formation of Anodic Oxide Films on As-Cast and Machined Surfaces of Al-Si-Cu Casting Alloy (주조용 Al-Si-Cu 알루미늄 합금의 기계가공 및 주조된 표면에서의 양극산화피막 형성)

  • Moon, Sung-Mo;Nam, Yoon-Kyung;Yang, Cheol-Nam;Jeong, Yong-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.260-266
    • /
    • 2009
  • The anodic oxidation behaviour of a cast component of AC2A Al alloy with machined surface and ascast surface was investigated in sulfuric acid solution. The anodized specimen showed relatively uniform and thick anodic oxide films on the as-cast surface, while non-uniform and very thin oxide films were formed on the machined surface. Non-anodized as-cast surface was observed to be covered with thick oxide scales and showed a number of second-phase particles containing Si, while non-anodized machined surface showed no oxide scales and relatively very small number of Si particles. Thus, the very limited growth of anodic oxide films on the as-cast surface was attributed to the presence of thick oxide scales and Si-containing second-phase particles on its surface.