• Title/Summary/Keyword: Cu Metallization

Search Result 128, Processing Time 0.031 seconds

Characteristics research of Cu-doped Programmable Metallization Cell (Cu를 도핑시킨 Programmable Metallization Cell의 특성연구)

  • Nam, Ki-Hyun;Ju, Long-Yun;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1289-1290
    • /
    • 2008
  • Programmable Metallization Cell (PMC) is a memory device based on the electrolytical characteristic of chalcogenide materials. In this study, we investigate the nature of thin films formed by photo doping of Cu ions into chalcogenide materials for use in solid electrolyte of programmable metallization cell devices. We were able to do more economical approach by using copper which play an electrolyte ions role. The results imply that a Cu-rich phase separates owing to the reaction of Cu with free atoms from chalcogenide materials.

  • PDF

Electrochemical Metallization Processes for Copper and Silver Metal Interconnection (구리 및 은 금속 배선을 위한 전기화학적 공정)

  • Kwon, Oh Joong;Cho, Sung Ki;Kim, Jae Jeong
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.141-149
    • /
    • 2009
  • The Cu thin film material and process, which have been already used for metallization of CMOS(Complementary Metal Oxide Semiconductor), has been highlighted as the Cu metallization is introduced to the metallization process for giga - level memory devices. The recent progresses in the development of key elements in electrochemical processes like surface pretreatment or electrolyte composition are summarized in the paper, because the semiconductor metallization by electrochemical processes such as electrodeposition and electroless deposition controls the thickness of Cu film in a few nm scales. The technologies in electrodeposition and electroless deposition are described in the viewpoint of process compatibility between copper electrodeposition and damascene process, because a Cu metal line is fabricated from the Cu thin film. Silver metallization, which may be expected to be the next generation metallization material due to its lowest resistivity, is also introduced with its electrochemical fabrication methods.

Solid Electrolytes Characteristics Based on Cu-Ge-Se for Analysis of Programmable Metallization Cell

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.227-230
    • /
    • 2008
  • Programmable Metallization Cell (PMC) Random Access Memory is based on the electrochemical growth and removal of electrical nanoscale pathways in thin films of solid electrolytes. In this study, we investigated the nature of thin films formed by the photo doping of copper ions into chalcogenide materials for use in programmable metallization cell devices. These devices rely on metal ions transport in the film so produced to create electrically programmable resistance states. The results imply that a Cu-rich phase separates owing to the reaction of Cu with free atoms from chalcogenide materials.

Cu-doped Programmable Metallization Cell의 스위칭 특성 연구

  • Nam, Gi-Hyeon;Jeong, Hong-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.57-57
    • /
    • 2009
  • Programmable Metallization Cell (PMC) is a memory device based on the electrolytical characteristic of chalcogenide materials. We investigated the nature of thin films formed by photo doping of Cu ions into chalcogenide materials for use in solid electrolyte of PMC. We were able to do more economical approach by using copper which play an electrolyte ions role. The results imply that a Cu-rich phase separates owing to the reaction of Cu with free atoms from chalcogenide materials.

  • PDF

Analysis of Ni/Cu Metallization to Investigate an Adhesive Front Contact for Crystalline-Silicon Solar Cells

  • Lee, Sang Hee;Rehman, Atteq ur;Shin, Eun Gu;Lee, Doo Won;Lee, Soo Hong
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.217-221
    • /
    • 2015
  • Developing a metallization that has low cost and high efficiency is essential in solar-cell industries, to replace expensive silver-based metallization. Ni/Cu two-step metallization is one way to reduce the cost of solar cells, because the price of copper is about 100 times less than that of silver. Alkaline electroless plating was used for depositing nickel seed layers on the front electrode area. Prior to the nickel deposition process, 2% HF solution was used to remove native oxide, which disturbs uniform nickel plating. In the subsequent step, a nickel sintering process was carried out in $N_2$ gas atmosphere; however, copper was plated by light-induced plating (LIP). Plated nickel has different properties under different bath conditions because nickel electroless plating is a completely chemical process. In this paper, plating bath conditions such as pH and temperature were varied, and the metal layer's structure was analyzed to investigate the adhesion of Ni/Cu metallization. Average adhesion values in the range of 0.2-0.49 N/mm were achieved for samples with no nickel sintering process.

Application of a Selective Emitter Structure for Ni/Cu Plating Metallization Crystalline Silicon Solar Cells (Selective Emitter 구조를 적용한 Ni/Cu Plating 전극 결정질 실리콘 태양전지)

  • Kim, Min-Jeong;Lee, Jae-Doo;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.575-579
    • /
    • 2010
  • The technologies of Ni/Cu plating contact is attributed to the reduced series resistance caused by a better contact conductivity of Ni with Si and the subsequent electroplating of Cu on Ni. The ability to pattern narrower grid lines for reduced light shading was combined with the lower resistance of a metal silicide contact and an improved conductivity of the plated deposit. This improves the FF (fill factor) as the series resistance is reduced. This is very much requried in the case of low concentrator solar cells in which the series resistance is one of the important and dominant parameter that affect the cell performance. A Selective emitter structure with highly dopeds regions underneath the metal contacts, is widely known to be one of the most promising high-efficiency solution in solar cell processing In this paper the formation of a selective emitter, and the nickel silicide seed layer at the front side metallization of silicon cells is considered. After generating the nickel seed layer the contacts were thickened by Cu LIP (light induced plating) and by the formation of a plated Ni/Cu two step metallization on front contacts. In fabricating a Ni/Cu plating metallization cell with a selective emitter structure it has been shown that the cell efficiency can be increased by at least 0.2%.

Characteristic of Cu-Ag Added Thin Film on Molybdenum Substrate for an Advanced Metallization Process (TFT-LCDs에 적용 가능한 Cu-Ag 박막에 대한 Mo 기판 위에서의 특성조사)

  • Lee, H.M.;Lee, J.G.
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.257-263
    • /
    • 2006
  • We have investigated the effect of silver added to Cu films on the microstructure evolution, resistivity, surface morphology, stress relaxation temperature, and adhesion properties of Cu(Ag) alloy thin films deposited on Mo glue layer upon annealing. In addition, pure Cu films deposited on Mo has been annealed and compared. The results show that the silver in Cu(Ag) thin films control the grain growth through the coarsening of its precipitates upon annealing at $300^{\circ}C{\sim}600^{\circ}C$ and the grain growth of Cu reveals the activation energy of 0.22 eV, approximately one third of activation energy for diffusion of Ag dopant along the grain boundaries in Cu matrix (0.75 eV). This indicates that the grain growth can be controlled by Ag diffusion along the grain boundaries. In addition, the grain growth can be a major contributor to the decreased resistivity of Cu(Ag) alloy thin films at the temperature of $300^{\circ}C{\sim}500^{\circ}C$, and decreases the resistivity of Cu(Ag) thin films to $1.96{\mu}{\Omega}-cm$ after annealing at $600^{\circ}C$. Furthermore, the addition of Ag increases the stress relaxation temperature of Cu(Ag) thin films, and thus leading to the enhanced resistance to the void formation, which starts at $300^{\circ}C$ in the pure Cu thin films. Moreover, Cu(Ag) thin films shows the increased adhesion properties, possibly resulting from the Ag segregating to the interface. Consequently, the Cu(Ag) thin films can be used as a metallization of advanced TFT-LCDs.

Analysis of Electronic Materials Using Transmission Electron Microscopy (TEM) (전자현미경을 이용한 전자재료분석)

  • Kim, Ki-Bum
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.132-144
    • /
    • 1994
  • The application of TEM in investigating the evolution of microstructure during solid phase crystallization of the amorphous Si, $Si_{1-x}Ge_x,\;and\;Si_{1-x}Ge_x/Si$ films deposited on $SiO_2$ substrate, in identifying the failure mechanism of the TiN barrier layer in the Cu-metallization scheme, and in comparing the microstructure of the as-deposited Cu-Cr and Cu-Ti alloy films are discussed. First, it is identified that the evolution of microstructure in Si and $Si_{1-x}Ge_x$ alloy films strongly depends on the concentration of Ge in the film. Second, the failure mechanism of the TiN diffusion barrier in the Cu-metallization is the migration of the Cu into the Si substrate, which results in the formation of a dislocation along the Si {111} plane and precipitates (presumably $Cu_{3}Si$) around the dislocation. Finally, the microstructure of the as-deposited Cu-Cr and Cu-Ti alloy films is also quite different in these two cases. From these several cases, we demonstrate that the information which we obtained using TEM is critical in understanding the behavior of materials.

  • PDF

Evaluation of the Residual Stress with respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor (압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가)

  • 심재준;한근조;김태형;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1537-1540
    • /
    • 2003
  • MEMS technology with micro scale is complete system utilized as the sensor. micro electro device. The metallization of MEMS is very important to transfer the power operating the sensor and signal induced from sensor part. But in the MEMS structures local stress concentration and deformation is often happened by geometrical shape and different constraint on the metallization. Therefore. this paper studies the effect of supporting type and thickness ratio about thin film thickness of the substrate thickness for the residual stress variation caused by thermal load in the multi-layer thin film. Specimens were made from materials such as Al, Au and Cu and uniform thermal load was applied, repeatedly. The residual stress was measured by FEA and nano-indentation using AFM. Generally, the specimen made of Al induced the large residual stress and the 1st layer made of Al reduced the residual stress about half percent than 2nd layer. Specimen made of Cu and Au being the lower thermal expansion coefficient induce the minimum residual stress. Similarly the lowest indentation length was measured in the Au_Cu specimen by nano-indentation.

  • PDF