• Title/Summary/Keyword: Cu Electrodeposition

Search Result 120, Processing Time 0.03 seconds

Influence of Applied Current Density on Properties of Cu thin layer Electrodeposited from Copper Pyrophosphate Bath (피로인산동 도금용액으로부터 전기도금 된 Cu 도금층의 물성에 미치는 인가전류밀도의 영향)

  • Yoon, Pilgeun;Park, Deok-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.190-199
    • /
    • 2020
  • Copper pyrophosphate baths were employed in order to study the dependencies of current efficiency, residual stress, surface morphology and microstructure of electrodeposited Cu thin layers on applied current density. The current efficiency was obtained to be more than about 90 %, independent of the applied current density. Residual stress of Cu electrodeposits was measured to be in the range of -30 MPa and 25 MPa with the increase of applied current density from 0.5 to 15 mA/㎠. Relatively smooth surface morphologies of the electodeposited Cu layers were obtained at an intermediate current range between 3 and 4 mA/㎠. The Cu electrodeposits showed FCC(111), FCC(200), and FCC(220) peaks and any preferred orientation was not observed in this study. The average crystalline size of Cu thin layers was measured to be in the range of 44~69 nm.

Surface Treatment of Dielectric Ceramic Resonator for High Frequency Devices (고주파용 유전체 세라믹 공진기의 표면처리)

  • Park, Hae-Duck;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.923-928
    • /
    • 2001
  • An electrolytic silver plating process has been successfully developed for terminated electrode parts of dielectric ceramic resonator. High adhesion strength and high Qu is obtained and blister occurance is minimized under plating condition with $HNO_3$750 $m\ell/\ell$ and HF $ 250m\ell/\ell$ solution at $25^{\circ}C$ for 20 minutes. Adhesion strength has the highest value, 3.2 kg/mm$^2$ at etching temperature of $25^{\circ}C$. Adhesion strength, Qu and blister occurance are monotonically increased with the thickness of electrodeposition layer. In case of electrodeposition of Ag, Qu value of 380 has obtained higher than in case of electrolytic Cu plating with Qu value of 325. Therefore, terminated electrode parts of dielectric ceramic resonator reducing dielectric loss can be obtained using prensent process.

  • PDF

Electrical Properties of Electroplated Cu Thin Film by Electrolyte Composite (전해액 조성에 따른 구리박막의 전기적 특성 변화에 대한 연구)

  • Song, Yoo-Jin;Seo, Jung-Hye;Lee, Youn-Seoung;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.344-348
    • /
    • 2009
  • The electrolyte effects of the electroplating solution in Cu films grown by ElectroPlating Deposition(EPD) were investigated. The electroplated Cu films were deposited on the Cu(20 nm)/Ti (20 nm)/p-type Si(100) substrate. Potentiostatic electrodeposition was carried out using three terminal methods: 1) an Ag/AgCl reference electrode, 2) a platinum plate as a counter electrode, and 3) a seed layer as a working electrode. In this study, we changed the concentration of a plating electrolyte that was composed of $CuSO_4$, $H_2SO_4$ and HCl. The resistivity was measured with a four-point probe and the material properties were investigated by using XRD(X-ray Diffraction), an AFM(Atomic Force Microscope), a FE-SEM(Field Emission Scanning Electron Microscope) and an XPS(X-ray Photoelectron Spectroscopy). From the results, we concluded that the increase of the concentration of electrolytes led to the increase of the film density and the decrease of the electrical resistivity of the electroplated Cu film.

Fabrication of Porous Nano Particles from Al-Cu Alloy Nano Powders Prepared by Electrical Wire Explosion (전기선 폭발법으로 제조된 Al-Cu 합금 나노분말을 이용한 다공성 나노 입자 제조)

  • Park, Je-Shin;Kim, Won-Baek;Suh, Chang-Youl;Ahn, Jong-Gwan;Kim, Byoung-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.234-238
    • /
    • 2008
  • Al-Cu alloy nano powders have been produced by the electrical explosion of Cu-plated Al wire. The porous nano particles were prepared by leaching for Al-Cu alloy nano powders in 40wt% NaOH aqueous solution. The surface area of leached powder for 5 hours was 4 times larger than that of original alloy nano powder. It is demonstrated that porous nano particles could be obtained by selective leaching of alloy nano powder. It is expected that porous Cu nano powders can be applied for catalyst of SRM (steam reforming methanol).

Fabrication of Cu-Zn Alloy Nano Powders by Wire Explosion of Electrodeposited Wires (도금선재의 전기선폭발을 이용한 Cu-Zn 합금 나노분말 제조)

  • Kim, Won-Baek;Park, Je-Shin;Suh, Chang-Yeul;Lee, Jae-Chun;Oh, Yong-Jun;Mun, Jeong-Il
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.38-43
    • /
    • 2007
  • Cu-Zn alloy nano powders were fabricated by the electrical explosion of Zn-electroplated Cu wire along with commercial brass wire. The powders exploded from brass wire were composed mainly of ${\alpha},{\beta},\;and\;{\gamma}$ phases while those from electroplated wires contained additional Zn-rich phases as ${\varepsilon}$, and Zn. In case of Zn-elec-troplated Cu wire, the mixing time of the two components during explosion might not be long enough to solidify as the phases of lower Zn content. This along with the high vapor pressure of Zn appears to be the reason for the observed shift of explosion products towards the high-Zn phases in electroplated wire system.

Preperation of CuInSe2 Nanoparticles by Solution Process Using Precyrsors

  • Choe, Ha-Na;Lee, Seon-Suk;Jeong, Taek-Mo;Kim, Chang-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.376-376
    • /
    • 2011
  • I-III-VI2 chalcopyrite compounds, particularly copper, indium, gallium selenide(Cu(InxGa1-x)Se2, CIGS), are effective light-absorbing materials in thin-film solar application. They are direct band-gap semiconductors with correspondingly high optical absorption coefficients. Also they are stable under long-term excitation. CIS (CIGS) solar cell reached conversion efficiencies as high as 19.5%. Several methods to prepare CIS (CIGS) absorber films have been reported, such as co-evaporation, sputtering, selenization, and electrodeposition. Until now, co-evaporation is the most successful technique for the preparation of CIS (CIGS) in terms of solar efficiency, but it seems difficult to scale up. CIS solar cells have been hindered by high costs associated with a fabrication process. Therefore, inorganic colloidal ink suitable for a scalable coating process could be a key step in the development of low-cost solar cells. Here, we will present the preparation of CIS photo absorption layer by a solution process using novel metal precursors. Chalcopyrite copper indium diselenide (CuInSe2) nanocrystals ranging from 5 to 20nm in diameter were synthesized by arrested precipitation in solution. For the fabrication of CIS photo absorption layer, the CuInSe2 colloidal ink was prepared by dispersing in organic solvent and used to drop-casting on molybdenum substrate. We have characterized the nanoparticless and CIS layer by XRD, SEM, TEM, and ICP.

  • PDF

The Influence of Deposition Temperature of ALD n-type Buffer ZnO Layer on Device Characteristics of Electrodeposited Cu2O Thin Film Solar Cells (ALD ZnO 버퍼층 증착 온도가 전착 Cu2O 박막 태양전지 소자 특성에 미치는 영향)

  • Cho, Jae Yu;Tran, Man Hieu;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 2018
  • Beside several advantages, the PV power generation as a clean energy source, is still below the supply level due to high power generation cost. Therefore, the interest in fabricating low-cost thin film solar cells is increasing continuously. $Cu_2O$, a low cost photovoltaic material, has a wide direct band gap of ~2.1 eV has along with the high theoretical energy conversion efficiency of about 20%. On the other hand, it has other benefits such as earth-abundance, low cost, non-toxic, high carrier mobility ($100cm^2/Vs$). In spite of these various advantages, the efficiency of $Cu_2O$ based solar cells is still significantly lower than the theoretical limit as reported in several literatures. One of the reasons behind the low efficiency of $Cu_2O$ solar cells can be the formation of CuO layer due to atmospheric surface oxidation of $Cu_2O$ absorber layer. In this work, atomic layer deposition method was used to remove the CuO layer that formed on $Cu_2O$ surface. First, $Cu_2O$ absorber layer was deposited by electrodeposition. On top of it buffer (ZnO) and TCO (AZO) layers were deposited by atomic layer deposition and rf-magnetron sputtering respectively. We fabricated the cells with a change in the deposition temperature of buffer layer ranging between $80^{\circ}C$ to $140^{\circ}C$. Finally, we compared the performance of fabricated solar cells, and studied the influence of buffer layer deposition temperature on $Cu_2O$ based solar cells by J-V and XPS measurements.

Cap Formation Process for MEMS Packages using Cu/Sn Rim Bonding (Cu/Sn Rim 본딩을 이용한 MEMS 패키지의 Cap 형성공정)

  • Kim, S.K.;Oh, T.S.;Moon, J.T.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.31-39
    • /
    • 2008
  • To develop the MEMS cap bonding process without cavity formation, we electroplated Cu/Sn rim structures and measured the bonding characteristics for the Cu/Sn rims of $25{\sim}400{\mu}m$ width. As the effective device-mounting area ratio decreased and the failure strength ratio increased for wider Cu/Sn rim, these two properties were estimated to be optimized for the Cu/Sn rim with 150 ${\mu}m$ width. Complete bonding was accomplished at the whole interfaces of the Cu/Sn packages with the rim widths of 25 ${\mu}m$ and 50 ${\mu}m$. However, voids were observed locally at the interfaces with the rim widths larger than 100 ${\mu}m$. Such voids were formed by local non-contact between the upper and lower rims due to the surface roughness of the electroplated Sn.

  • PDF

Characterization of the Cu-layer deposition time on Cu2ZnSnS4 (CZTS) Thin Film Solar Cells Fabricated by Electro-deposition (Cu층 증착시간에 따른 Cu2ZnSnS4 (CZTS) 박막의 특성)

  • Kim, Yoon Jin;Kim, In Young;Gang, Myeng Gil;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.16-20
    • /
    • 2016
  • $Cu_2ZnSnS_4$ (CZTS) thin films were fabricated by successive electrodeposition of layers of precursor elements followed by sulfurization of an electrodeposited Cu-Zn-Sn precursor. In order to improve quality of the CZTS films, we tried to optimize the deposition condition of absorber layers. In particular, I have conducted optimization experiments by changing the Cu-layer deposition time. The CZTS absorber layers were synthesized by different Cu-layer conditions ranging from 10 to 16 minutes. The sulfurization of Cu/Sn/Zn stacked metallic precursor thin films has been conducted in a graphite box using rapid thermal annealing (RTA). The structural, morphological, compositional, and optical properties of CZTS thin films were investigated using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and X-ray Flourescenece Spectrometry (XRF). Especially, the CZTS TFSCs exhibits the best power conversion efficiency of 4.62% with $V_{oc}$ of 570 mV, $J_{sc}$ of $18.15mA/cm^2$ and FF of 45%. As the time of deposition of the Cu-layer to increasing, the properties were confirmed to be systematically changed. And we have been discussed in detail below.