• 제목/요약/키워드: Cu 회수

Search Result 193, Processing Time 0.023 seconds

Leaching behavior of copper using electro-generated chlorine in hydrochloric acid solution (전해생성(電解生成)된 염소(鹽素)에 의한 구리의 침출(浸出) 거동(擧動))

  • Kim, Eun-Young;Kim, Min-Seuk;Lee, Jae-Chun;Jung, Jin-Ki
    • Resources Recycling
    • /
    • v.15 no.6 s.74
    • /
    • pp.33-40
    • /
    • 2006
  • Leaching behavior of copper using electro-generated chlorine was investigated in hydrochloric acid solutions. When leached copper concentration was lower than 3.6g/L, the utilization efficiency of the electro-generated chlorine was close to 100% at $10mA/cm^2,\;25^{\circ}C$, 400 rpm in 1M HCl solutions. The concentration ot the leached copper over 3.6g/L caused the electrode potential to drop quietly, leading to a change or leaching mechanism. The leaching rate oi copper began to decrease at the concentration of copper 5.2g/L. This is probably due to the formation of a layer of CuCl on Cu metal in 1M HCl solutions. The leaching rate, however, was not retarded in a solution ot high chloride concentration. The high solubility of CuCl in the solution may prevent the formation of CuCl on Cu metal.

Biological Leaching of Cu, Al, Zn, Ni, Co, Sn and Pb from Waste Electronic Scrap using Thiobacillus Ferrooxidans (廢電子스크랩에서 Thiobacillus ferrooxidans를 이용한 Cu, Al, Zn, Ni, Co, Sn 및 Pb의 浸出)

  • Ahn, Jae-Woo;Kim, Myeong-Woon;Jeong, Jin-Ki;Lee, Jae-Chun;Kim, Dong-Gin;Ahn, Jong-Gwan
    • Resources Recycling
    • /
    • v.14 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • In order to recover valuable metals from the waste electronic scrap, bioleaching of Cu, Zn, Al, Co, Ni, Sn and Pb was carried out using Thiobacillus ferrooxidans as a leaching microorganism in a shaking flask. In a preliminary study, to obtain the data on the leaching of Cu, Zn, Al, Co and Ni, the metal leaching was accomplished using metal powers instead of electronic scrap. The leaching percentaga of Cu, Zn, Co, Al and Ni powers was reduced with the increase of metal power concentration in solution. Below the metal concentration of 0.5 g/L, more than 85% of Cu, Co and Zn powers was leached out. At the electronic scrap concentration of 100 g/L, Thiobacillus ferrooxidans were able to leach more than 90% of the available Cu and Co while Al, Zn and Ni were able to leach less than 40%. Pb and Sn were not detected in the leachate. Pb was precipitated as PbSO$_4$, whereas Sn precipitated probably as SnO.

Effects of Systematic Variation Application of Fe, Mn, Cu and Zn on these Contents in Orchardgrass and White Clover (Fe, Mn, Cu 및 Zn의 Systematic Variation 시비가 Orchardgrass 및 White Clover중 이들의 함량에 미치는 영향)

  • Jung, Yeun-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.4
    • /
    • pp.271-280
    • /
    • 2004
  • This pot experiment was conducted to investigate the effects of systematic variation appling of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover. The treatments of systematic variation were 0/100, 25/75, 50/50, 75/25, and $100/0\%$ in the Fe/Cu(trial-1), Mn/Zn(trial-2), and Fe+Cu/Mn+Zn(trial-3), respectively. The treatments of Fe/Mn/Cu/Zn(trial-4) were $70\%$ in main-element and $10\% in other 3 sub-elements, respectively. 1. Compared with orchadgrass, white clover showed relatively consistent differences in the content of micronutrients as influenced by treatments of the systematic variation. The contents of Mn and Cu in the forages were significantly influenced by the application rates of Mn and Cu, respectively. The contents of Fe and Zn in the forages, however, were not significantly different among these treatments. 2. Compared with orchardgrass in the Fe/cu trial, white clover had not only the low content of Cu but also the Cu content and yield of white clover were greatly decreased by the low rate of application of Cu. In the Mn/Zn trial, the $0/100\%$ resulted in the severe decrease of Mn-content in both forages. The low content of Mn in white clover tended to be negatively correlated to the Mn-chlorosis, inferior growth and flowering, and low yield. 3. In the Fe+Cu/Mn+Zn trial, the application with $0/100\%$ and $0/100\%$ resulted in the relatively great decrease of Cu and Mn contents, respectively. These traits in white clover tended to be negatively correlated to the inferior growth and flowering, and low yield 4. In the Fe/Mn/Cu/Zn trial, the content of every main-elements in the forages were increased especially in Mn. In addition, the contents of sub-elements were likely to be somewhat negatively influenced by the treatment of main-element respectively.

A Study on the Au Recoverability from Mongolian Tailings (몽골 광미로부터 Au 회수 가능성에 관한 연구)

  • Ko, Chin-Surk;Burentogtokh, Togtokhmaa;Lee, Jong-Ju;Park, Cheon-Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.41-51
    • /
    • 2020
  • The purpose of this study was to investigate the possibility of eco-friendly/efficient recovery of valuable resources, such as Au from mine tailings, which are environmental pollutants in the Mongolian mine sector. For this purpose, this study selected 4 place of mine tailings of the Mongolian mines sector and carried out mineralogy evaluation of the valuable resources in the tailings. In this study, flotation was performed to separate and concentrate valuable resources in the tailings. Microwave nitric acid leaching was used to leach the valuable resources contained in the sample and to improve the Au grade. Chloride leaching attempted to leach Au from the leaching residues. XRD analysis of the tailings samples showed that most of the samples consisted of silicate minerals. As a result of confirming the content of the element through XRF analysis, the SiO2 content was very high, the Fe2O3 content was 2.32-4.23%, and the content of PbO, CuO and ZnO components were all within 2%. As a result of flotation for the tailings samples, the recovery of Au was the highest in Bayanairag sample (95.38%). As a result of microwave nitric solution experiment on Au concentrate sample obtained by flotation, the content of Au in the microwave nitrate leaching residue increased by 12.15% from 192.72 g/ton to 216.14g/ton in Khamo sample, the highest increase was 57.58% in Bayanairag sample. TCLP tests on tailings generated after flotation showed dissolution characteristics within EPA. Chloride leaching test was performed to recover Au from solid residues. The leaching rate was 87.43-89.35% within 10 minutes. For Khamo sample, 100% Au was leached after 60 minutes of leaching time. Therefore, in order to process the tailings continuously generated in Mongolia, applying the same process as the present study is expected to effectively recover the valuable resources contained in the tailings.

Recovery of $SF_6$ gas from Gaseous Mixture ($SF_6/N_2/O_2/CF_4$) through Polymeric Membranes (고분자 분리막을 이용한 혼합가스($SF_6/N_2/O_2/CF_4$)로부터 $SF_6$의 회수)

  • Lee, Hyun-Jung;Lee, Min-Woo;Lee, Hyun-Kyung;Choi, Ho-Sang;Lee, Sang-Hyup
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • During the maintenance, repair and replacement process of circuit breaker, $SF_6$ reacted with input air in arc discharge, which led to the production of by-product gases (eg, $N_2$, $O_2$, $CF_4$, $SO_2$, $H_2O$, HF, $SOF_2$, $CuF_2$, $WO_3$). Among these various by-product gases, $N_2$, $O_2$, $CF_4$ is major component. Therefore, the effective separation process is necessary to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. In this study, the membrane separation process was applied to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. The concentration of $SF_6$ gas in gas produced from the electric power industry is over than 90 vol%. Therefore, we made the simulated gas containing $N_2$, $O_2$, $CF_4$, $SF_6$ which the concentration of $SF_6$ gas is minimum 90 vol%. From the results of membrane separation process of $SF_6$ gas from $N_2$, $O_2$, $CF_4$ $SF_6$ mixture gases, PSF membrane shown the highest recovery efficiency 92.7%, in $25^{\circ}C$ and 150 cc/min of retentate flow rate. On the other hand, PC membrane shown the highest recovery efficiency 74.8%, in $45^{\circ}C$ and 150 cc/min of retentate flow rate. Also, the highest rejection rate of $N_2$, $O_2$, $CF_4$ is 80, 74 and 58.9% seperately in the same operation condition of highest recovery efficiency. From the results, we supposed the membrane separation process as the effective $SF_6$ separation and recycle process from the mixture gas containing $N_2$, $O_2$, $CF_4$, $SF_6$.

Distribution of trace metals in the deep ocean waters of the East Sea (동해심층수 개발해역의 미량금속 분포)

  • Kim, Kyung-Tae;Jang, Si-Hun;Kim, Eun-Soo;Cho, Sung-Rok;Park, Jun-Kun;Moon, Deok-Soo;Kim, Hyeon-Ju
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.163-168
    • /
    • 2006
  • In order to develop the deep ocean water, we performed to study the characteristics of vertical distribution of dissolved trace metals(Cd, Co, Cu, Ni, Pb, Zn) from Apr. to Oct., 2005 in the East Sea. Total six sampling sites were selected in Gangwon-Do and Gyeongsanbuk-Do. Accuracy of the analytical procedures was assessed by the SRM(CASS-4) for dissolved metals in seawater. The mean recoveries of CASS-4 ranged from 89.4% for Co to 99.8% for Cd. In this study, the dissolved metal concentrations varied with space, time and element. The metal concentrations showed wide range in the surface. Cd, Ni and Zn showed a nutrient-type profile with surface depletion and enrichment at depth. However, Co, Cu and Pb were irregular in the vertical distribution. All metal concentrations studied in this study are lower than the criteria of Korean drinking water.

  • PDF

Quantitative Analysis of Skarn Ore Using 3D Images of X-ray Computed Tomography (3차원 X-ray 단층 화상을 이용한 스카른 광석의 정량분석 연구)

  • Jeong, Mi-Hee;Cho, Sang-Ho;Jeong, Soo-Bok;Kim, Young-Hun;Park, Jai-Koo;Kaneko, Katsuhiko
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.211-217
    • /
    • 2010
  • A micro-focus X-ray computed tomography (CT) was employed to determine quantitative phase analysis of skarn Zn-Pb-Cu ore by nondestructive visualization of the internal mineral distribution of a skarn ore. The micro CT images of the ore were calibrated to remove beam hardening artifacts, and compared with its scanning electron microscope (SEM) images to set the threshold of CT number range covering sulfide ore minerals. The volume ratio of sulfide and gangue minerals was calculated 20.5% and 79.5%, respectively. The quantitative 3D X-ray CT could be applied to analyse the distribution of economic minerals and their recovery.

Current Status on the Pyrometallurgical Process for Recovering Precious and Valuable Metals from Waste Electrical and Electronic Equipment(WEEE) Scrap (폐전기전자기기(廢電氣電子機器) 스크랩으로부터 귀금속(貴金屬) 및 유가금속(有價金屬) 회수(回收)를 위한 건식공정(乾式工程) 기술(技術) 현황(現況))

  • Kim, Byung-Su;Lee, Jae-Chun;Jeong, Jin-Ki
    • Resources Recycling
    • /
    • v.18 no.4
    • /
    • pp.14-23
    • /
    • 2009
  • In terms of resources recycling and resolving waste disposal problems, it is very important to recover precious metals like Au, Ag and Pd and valuable metals like Cu, Sn and Ni from the scraps of waste electrical and electronic equipment(WEEE) that consists of detective electrical and electronic parts discarded during manufacturing electrical and electronic equipments and waste electrical and electronic parts generated during disassembling them. In general, the scraps of WEEE are composed of various metals and alloys as well as refractory oxides and plastic components. Precious and valuable metals from the scraps of WEEE can be recovered by gas-phase-volatilization, hydrometallurgical, or pyrometallurgical processes. However, the gas-phase-volatilization and hydrometallurgical processes have been suggested but not yet commercialized. At the present time, most of the commercial plants for recovering precious and valuable metals from the scraps of WEEE adopt pyrometallurgical processes. Therefore, in this paper, the technical and environmental aspects on the important pyrometallurgical processes through literature survey are reviewed, and the scale-up result of a new pyrometallurgical process for recovering the precious and valuable metals contained in the scraps of WEEE using waste copper slag is presented.

Organic Precipitate Flotation of Trace Metallic Elements with Ammonium Pyrrolidinedithiocarbamate(Ⅰ). Determination of Bismuth, Cadmium, Cobalt and Lead in Water Samples by Coprecipitation-Flotation with Cu-pyrrolidinedithiocarbamate (Ammonium Pyrrolidinedithiocarbamate에 의한 극미량 금속원소의 유기침전 부선에 관한 연구(제1보) Cu-pyrrolidinedithiocarbamate 공침부선에 의한 물시료중 비스무트, 카드뮴, 코발트 및 납의 정량)

  • Jung, Yong June;Choi, Jong Moon;Choi, Hee Seon;Kim, Young Sang
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.12
    • /
    • pp.724-732
    • /
    • 1996
  • The organic precipitate flotation using Cu(II)-pyrrolidinedithiocarbamate complex as a coprecipitant was studied for the preconcentration and determination of trace Cd, Pb, Bi and Co in several water samples. Experimental conditions such as pH of solution, amounts of Cu(II) and ammonium pyrrolidinedithiocarbamate(APDC), stirring time, the type and amount of surfactant, etc. were optimized for the effective flotation of analytes. After 3.0 mL of 1,000 ${\mu}g/mL$ Cu(II) solution was added to 1.00 L water sample, the pH of the solution was adjusted to 2.5 with HNO3 solution. Trace amounts of analytes were coprecipitated by adding 2.0% APDC solution. And the precipitates were flotated onto the surface of solution with the aid of nitrogen gas and sodium lauryl sulfate. The floats were collected from mother liquor, and filtered through the micropore glass filter by suction. The precipitates were dissolved with 4 mL conc. HNO3, and then diluted to 25.00 mL with deionized water. The analytes were determined by graphite furnace atomic absorption spectrophotometry. This flotation technique was applied to the analysis of some water samples, and the 90 to 120% of recoveries were obtained from the spiked samples, this procedure could be concluded to be simple and applicable for the trace element analysis in various kinds of water.

  • PDF

Characterisitics of the Copper Converter Slag -Recovery of Copper from the Copper Converter Slag(I)- (동제연소 전노슬래그의 생성에 관하여 -동제연소 전노슬래그로 부터 동의 회수(I)-)

  • Kim, Mahn;Kim, Mi-Sung;Yoo, Taik-Soo;Oh, Jae-Hyun
    • Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.14-22
    • /
    • 1992
  • As a basic study to recover the copper from the copper converter slag, the characterisitcs of converter slag was studied. The results obtained in this work are as follows. 1. The copper converter slag is composed of Cu, $Cu_2$S, $Fe_3$$O_4$, Fayalite and silicate. 2. It is supposed that magnetite in converter slag is oxidized to hematite at $720^{\circ}C$ and this phase is soluted to fayalite. 3. As the converter slag is added in the water solution, pH increased and the heavy metal ions in the water are adsorbed on the slag. 4. Work index of the converter slag cooled for the 10 hour and the 2 hour are 25~27 kWh/ton and 35 kWh/ton, respectively. 5. In the case of grinding test of converter slag, fayalite in converter slag is easily grinded than magnetite in converter slag.

  • PDF