• Title/Summary/Keyword: Cu,Zn-superoxide dismutase (SOD1)

Search Result 140, Processing Time 0.034 seconds

Oxygen Toxicity of Superoxide Dismutase-Deficient Saccharomyces cerevisiae by Paraquat (Paraquat에 의해 유도된 Superoxide Dismutase 결핍 효모의 산소 독성)

  • 김지면;남두현용철순허근
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.561-567
    • /
    • 1995
  • Using superoxide dismutase (SOD)-deficient mutants of Saccharomyces cerevisiae, the oxygen toxicity induced by paraquat was studied. In aerobic culture condition, yeasts lacking MnSOD (milochondrial SOD) showed more significant growth retardation than CuZnSOD (cytoplasmic SOD)-deficient yeasts. However, not so big differences in growth pattern of those mutants compared with wild type were observed under anaerobic condition. When exposed to paraquat, the growth of yeasts lacking CuZnSOD was severely affected by higher than 0.01mM of paraquat in culture medium. By the analysis of several cellular components ivolved in free radical generating and scavenging system, it was found that, under aerobic condition, the content of lipid peroxides in cell membrane as well as cellular activity of glutathion peroxidase of CuZnSOD-deficient mutants was increased in the presence of paraquat, although significant decrease of catalase activity was observed in those stratns. In MnSOD-deficient yeast, however, increment in cellular activity of glutathion peroxldase and catalase by paraquat was observed without any deterioration of membrane lipid. It implies that the lack of mitochondrial SOD could be compensated by both of glutathion peroxldase and catalase, but that only glutathion peroxidase might act for CuZnSOD in cytoplasm. In contrast, all of SOD-deficient mutants showed a significant decrease in catalase activity, but slight increase in the activities of glutathion peroxidase, when cultivated anaerobically in the medium containing paraquat. Nevertheless, any significant changes of lipid peroxides in cell membranes were not observed during anaerobic cultivation of SOD-deficient mutants. It suggests that a little amount of free radicals generated by paraquat under anaerobic condition could be sufficiently overcome by glutathion peroxidase but not by catalase.

  • PDF

Effects of zinc bearing palygorskite supplementation on the growth performance, hepatic mineral content, and antioxidant status of broilers at early age

  • Yang, Weili;Chen, Yueping;Cheng, Yefei;Wen, Chao;Zhou, Yanmin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.1006-1012
    • /
    • 2017
  • Objective: This study was conducted to investigate effects of zinc (Zn) bearing palygorskite (ZnPal) supplementation on growth performance, hepatic mineral content, and antioxidant status of broilers at early age. Methods: A total of 240 1-day-old Arbor Acres broiler chicks were allocated into 5 treatments with 6 replicates of 8 chicks each. Birds in 5 treatments were fed a basal diet supplemented with 0 (Control group; Analyzed Zn content: 81 mg/kg), 20, 40, 60, and 80 mg/kg Zn as ZnPal for 21 days, respectively. Blood, liver and intestinal mucosa were collected at 21 days of age. Results: Treatments did not affect growth performance of broilers during the 21-day study (p>0.05). The contents of hepatic Zn and magnesium (Mg) were linearly increased (p<0.001) by ZnPal supplementation. ZnPal inclusion linearly (p = 0.007) reduced malondialdehyde (MDA) concentration in serum. The activity of total superoxide dismutase (T-SOD) in liver increased linearly (p = 0.001) with concentration of ZnPal in diet. ZnPal inclusion linearly (p = 0.036) and quadratically (p = 0.005) increased T-SOD activity, and linearly (p = 0.012) increased copper/zinc superoxide dismutase (Cu/Zn SOD) activity in jejunal mucosa. The maximum responses of hepatic and jejunal antioxidant enzymes activities (T-SOD and Cu/Zn SOD) were found when supplementing the basal diet with 60 mg/kg Zn as ZnPal. Furthermore, ZnPal supplementation quadratically (p = 0.001) increased Cu/Zn SOD activity in ileal mucosa, and its maximum activity was observed in the diet supplemented with 20 mg/kg Zn as ZnPal. Conclusion: ZnPal supplementation did not alter growth performance of broilers. Dietary ZnPal inclusion could increase concentrations of hepatic trace minerals (Zn and Mg) and inhibit lipid peroxidation by reducing serum MDA accumulation, with the optimal dosage of Zn from ZnPal being 80 mg/kg diet (analyzed Zn content in the diet: 165 mg/kg), and 60 mg/kg Zn as ZnPal (analyzed Zn content in the diet: 148 mg/kg) was the optimum dosage for broilers to achieve maximum antioxidant enzyme activities.

간장내 Superoxide Dismutase 측정법

  • 임동윤;고석태
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.149-149
    • /
    • 1993
  • 목적:동식물세포에는 superoxide(0$_{-2}$)의 불균화 반응을 촉매하는 superoxide dismutase (SOD)가 존재한다. 이 효소의 생리적 의의는 지금까지도 명확하게 되어있지 않는면이 많지만, 그 의의를 명확하게 하기위해서도 측정법의 확립이 필요하다. 방법: SOD측정 방법으로는 1) Cytochrome C method 2) Nitroblue tetrazoliun method (NBT법) 3) 면역학적 방법 4) 화학발광법 등이 있다. 실험 재료는 흰쥐, mouse, 토끼의 간을 이용하였으며, 또한, 노화 및 암세포를 이용한 방법을 이용하였다. 결과: Cytochrome C 방법을 통해서 각 장기조직 (신장, 간장, 폐)에서 SOD를 측정하였으며 SOD 활성이 낮은 암조직이나 배양세포에서는 NBT 방법이 측정방법으로 적합한 것으로 나타났으며 ,간장세포내에서의 SOD의 존재부위를 확인하는 방법으로는 면역 황금 표지방법을 사용하므로 간장 mitochondria 내에 Cu, Zn-SOD가 존재함을 알 수 있었다.

  • PDF

Genomic Structure of the Cu,Zn Superoxide Dismutase (SOD1) Gene of Paecillomyces tenuipes and Paecilomyces sp.

  • Park Nam Sook;Lee Kwang Sik;Lee Sang Mong;Je Yeon Ho;Park Eunju;Sohn Hung Dae;Jin Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.10 no.1
    • /
    • pp.35-43
    • /
    • 2005
  • We describe here the complete nucleotide sequence and the exon-intron structure of the Cu,Zn superoxide dismutase (SOD1) gene of Paecilomyces tenuipes and Paecilomyces sp. The SOD1 gene of P. tenuipes spans 966 bp, and consisted of three introns and four exons coding for 154 amino acid residues. Three unambiguous introns in P. tenuipes separate exons of 13, 332, 97, and 20 bp, all exhibiting exon sizes identical to Cordyceps militaris SOD1 gene. The SOD1 gene of Paecilomyces sp. contains 946 bp and consisted of four introns and five exons coding for 154 amino acid residues. Five exons of Paecilomyces sp. SOD1 are composed of 13, 180, 152, 97, and 20 bp. Interestingly, this result showed that the total length of exons 2 (180 bp) and 3 (152 bp) of Paecilomyces sp. SOD1 is same to exon 2 length (332 bp) of C. militaris SOD1 and P. tenuipes SOD1. The deduced amino acid sequence of the P. tenuipes SOD1 showed $95\%$ identity to C. militaris SOD1 and $78\%$ to Paecilomyces sp. SOD1. Phylogenetic analysis confirmed that the C. militaris SOD1, P. tenuipes SOD1 and Paecilomyces sp. SOD1 are placed together within the ascomycetes group of fungal clade.

Inactivation of Photosystem I in Cucumber Leaves Exposed to Paraquat-Induced Oxidative Stress

  • Park, Sun-Mi;Suh, Key-Hong;Kim, Jae-sung;Park, Youn-Il
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.13-17
    • /
    • 2001
  • Cucumber leaves subjected to light chilling stress exhibit a preferential inactivation of photosystem(PS) I relative to PSII, resulting in the photoinhibition of photosynthesis. In light chilled cucumber leaves, Cu/Zn-Superoxide dismutase(SOD) is regarded as a primary target of the light chilling stress and its inactivation is closely related to the increased production of reactive oxygen species. In the present study, we further explored that inactivation of PSI in cucumber leaves is not a light chilling specific, but general to various oxidative stresses. Oxidative stress in cucumber leaves was induced by treatment of methylviologen(MV), a producer of reactive oxygen species in chloroplasts. MV treatment decreased the maximal photosynthetic O$_2$ evolution, resulting in the photoinhibition of photosynthesis. The photoinhibition of photosynthesis was attributable to the decline in PSI functionality determined in vivo by monitoring absorption changes around 820 nm. In addition, MV treatment inactivated both antioxidant enzymes Cu-Zn-superoxide dismutase and ascorbate peroxidase known sensitive to reactive oxygen species. From these results, we suggest that chloroplast antioxidant enzymes are the primary targets of photooxidative stress, followed by subsequent inactivation of PSI.

  • PDF

Superoxide Dismutase Activity in Suspension Cultured Cells of Tomato (Lycopersicon esculentum Mill) (토마토(Lycopersicon esculentum Mill) 현탁배양세포에서 Superoxide Dismutase 활성)

  • 유순희;허경혜;권석윤;이행순;방재욱;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.1
    • /
    • pp.57-61
    • /
    • 1997
  • We investigated changes in the superoxide dismutase (SOD) activity and SOD isoenzyme pattern in suspension cultures of tomato (Lycopersicon esculentum), which were compared with those of intact tomato plants. two grams (fr wt) of cells subcultured at 15-day intervals were inoculated into 50 mL MS medium containing l mg/L 2,4-D and 30 g/L sucrose in a 300 mL flask and maintained at $25^{\circ}C$ in the dark (100 rpm). The cell growth reached a maximum at 20 days after subculture (DAS), followed by a rapid decrease with further cultures. The cell colour changed from white to black from 23 DAS. The intracellular SOD activity (units/g cell dry wt) was significantly increased from 23 DAS and reached a maximum at 28 DAS (52,400 units), followed by a decrease with further cultures, whereas the extracellular SOD activity showed a maximum at 25 DAS (27,800 units/50 mL medium). The total SOD activity per flask showed a maximum at 25 DAS (35,700 units), in which the extracellular SOD activity occupied about 75%. The tomato cultured cells had four SOD isoenzymes and their patterns were well correlated with SOD activity without a qualitative change during the cell cultures. The intact tomato plants had an additional CuZnSOD isoenzyme, showing the different isoenzyme patterns from cultured cells.

  • PDF

Improvement of Drought Tolerance in Transgenic Tobacco Plant (형질전환 담배의 내건성 개선)

  • Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.173-179
    • /
    • 2016
  • Leaf water and osmotic potential, chlorophyll content, photosynthetic rate, and electrolyte leakage were measured to evaluate tolerance to water stress in wild-type (WT) and transgenic tobacco plants (TR) expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts. Leaf water potential of both WT and TR plants decreased similarly under water stress condition. However, leaf osmotic potential of TR plants more negatively decreased in the process of dehydration, compared with WT plants, suggesting osmotic adjustment. Stomatal conductance (Gs) in WT plants markedly decreased from the Day 4 after withholding water, while that in TR plants retained relatively high values. Relatively low chlorophyll content and photosynthetic rate under water stress were shown in WT plants since $4^{th}$ day after treatment. In particular, damage indicated by electrolyte leakage during water stress was higher in WT plants than in TR plants. On the other hand, SOD and APX activity was remarkably higher in TR plants. These results indicate that transgenic tobacco plants expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts improve tolerance to water stress.

Dose-Response Relationship between Catalase and Superoxide Dismutase Activity in Testes of Acutely Intoxicated Rats by Cadmium (급성 카드뮴중독시 랏트의 고환조직내 Catalase 및 Superoxide Dismutase 활성도와의 양-반응관계)

  • Park, Bo-Young;Park, Jung-Duck;Chung, Kyou-Chull
    • Journal of Preventive Medicine and Public Health
    • /
    • v.21 no.2 s.24
    • /
    • pp.295-306
    • /
    • 1988
  • Dose-response relationship among blood cadmium concentrations, catalase and superoxide dismutase activities were studied with acutely intoxicated rats by cadmium. The Sprague-Dawley male rats to which single dose of $1{\sim}32mg/kg\;CdCl_2$ were administered into peritoneal cavity were sacrificed by decapitation at $3{\sim}36$ hours after the administration. Cadmium concentrations in blood increased significantly with dose of $CdCl_2$ administered and reached peak level at 3 hours later. Catalase activities in rats' testes were not correlated with esposure time elapsed after the administration in rats to which $1{\sim}2mg/kg\;of\;CdCl_2$ were administered, but they showed linear relationship with time in groups to which $4{\sim}32mg/kg\;of\;CdCl_2$ were administered. Cu, Zn-SOD activities in testes of acutely intoxicated rats by cadmium were not altered either by dosage or by time elapsed after the administration. Mn-SOD activities in the testes were also not influenced by dosage of $1{\sim}2mg/kg\;CdCl_2$, but remarkably inactivated by dosage of $4{\sim}32mg/kg\;CdCl_2$ with time elapsed after the administration. Neither catalase, Cu, Zn-SOD nor Mn-SOD activities of testes were correlated with blood cadmium concentrations in acutely intoxicated rats by cadmium.

  • PDF

Erythrocyte Manganese Superoxide Dismutase Activity Indicates Training Intensity for Racing Horses (적혈구의 Manganese Superoxide Dismutase 활성은 경주마의 훈련강도를 나타낸다)

  • Choi, Jun-Young;Park, In-Kyung;Im, Jin-Taek;Koh, Tae-Song
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.573-580
    • /
    • 2008
  • This study was aimed to investigate that training of horses is related with the activity of superoxide dismutase(SOD) in erythrocyte of racing horses. The SOD activity was assayed from erythrocyte of six Thoroubred horses having final stage of training, about 21 month-old, 474~509 kg body weight for race trainig. During 7 weeks of training period from 24th Sep. to 6th Nov, horses were bled very carefully 4 times at 1st Oct, 16th Oct, 30th Oct. and 6th Nov. As the training period passed, erythrocyte of the horses have gradually increased the MnSOD activity(p<0.05) and lowered the CuZnSOD activity. The plasma ceruloplasmin and peroxidase activities, and lactate levels were reduced gradually while peroxide and glucose levels gradually increased. The calculated oxygen consumption(Eaton, 1995) for training of horses were linearly related with the MnSOD activity(r=0.650, n=32) but negatively with CuZnSOD activity in erythrocyte and lactate levels(r=-349, n=32) in plasma. Also, peroxide levels in plasma of horses had positive relation with the MnSOD activity in erythrocyte(r=0.616, n=48). In conclusions, as the training is progressed, the raised MnSOD activity in erythrocytes and peroxide levels in plasma indicated balances between oxidant and antioxidants for the protection from ROS during race of horses. The results showed that the MnSOD activity in erythrocyte and peroxide levels in plasma may be used as marker for the intensity of training racing horses.

Expression of Cu/Zn SOD according to H2O2 in Hepatoma cell line (Hepatoma 세포주에서 H2O2 처리에 의한 Cu/Zn SOD의 발현)

  • Kim, Young-Min;Seo, Won-Sook
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.230-234
    • /
    • 2007
  • Oxygen is required for many important aerobic cellular reactions, it may undergo electrontransfer reactions, which generate highly reactive membrane-toxic intermediates (reactive oxygen species, ROS), such as hydrogen peroxide, singlet oxygen, superoxide radical, hydroxyl radical, hydroperoxyl radical, hydroxy ion. Various mechanisms are available to protect cells against damage caused by oxidative free radicals, including scavenging enzyme systems such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This antioxidant defense system is a very complex and finely tuned system consisting of enzymes capable of detoxifying oxygen radicals as well as low molecular weight antioxidants. In addition, repair and turnover processes help to minimize subcellular damage resulting from free radical attack. $H_2O_2$,one of the major ROS, is produced at a high rate as a product of normal aerobic metabolism. The primary cellular enzymatic defense systems against $H_2O_2$ are the glutathione redox cycle and catalase. From Northern blot analysis of total RNAs from cultured cell with $H_2O_2$ treatment, various results were obtained. Expression of Cu/Zn SOD decreased when cell passage increased, but the level of the Cu/Zn SOD was scarcely expressed in 35 passage.