• 제목/요약/키워드: Cu+ complex

검색결과 610건 처리시간 0.036초

Extraction of Water-Soluble Porphyrin and Metalloporphyrins into Acetonitrile by Salting-out

  • Tabata, Masaaki;Kumamoto, Midori
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.511-517
    • /
    • 1995
  • A cationic water soluble porphyrin (5,10,15,20-tetrakis (l-methyl-pyridinium-4-yl)porphyrin, $H_2tmpyp^{4+}$) and its metalloporphyrins (MP) were easily extracted into acetonitrile separated by addition of sodium chloride ($4mol\;dm^{-3}$) in the presence of sodium perchlorate, where M denotes $Zn^{2+}$, $Cu^{2+}$, $Co^{3+}$, $Fe^{3+}$, and $Mn^{3+}$ and $P^{2-}$ is porphyrinate ion. The extracted ion-pair complexes were completely dissociated to $[MP(ClO_4)_3]^+$, and $[MP(ClO_4)_2]^{2+}$. The extraction and the dissociation constants were determined by taking into account of the partition constant of sodium perchlorate ($K_D=1.82{\pm}0.01$). The chemical properties of the separated acetonitrile phase as $E_{T(30)}$ and $D_{II,I}$ were determined and compared with other water miscible solvents (acetone, actonitrile, 1,4-dioxane, tetrahydrofuran, 1-propanol and 2-propanol). Furthermore, a sensitive and selective method was proposed for the determination of a subnanogram amount of copper(II) in natural water samples by using the present salting-out method and the porphyrins.

  • PDF

Fe계 나노결정립 분말의 표면 산화에 따른 전자파 흡수특성 (Effect of the Surface Oxidation on the Electromagnetic Wave Absorption Behavior of a Fe-based Nanocrystalline Alloy)

  • 구숙경;우수정;문병기;송용설;박원욱;손근용
    • 한국분말재료학회지
    • /
    • 제14권5호
    • /
    • pp.303-308
    • /
    • 2007
  • The oxidation of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline powder has been conducted to investigate its influence on the electromagnetic wave absorption characteristics of the soft magnetic material. Oxidation occurred primarily on the surface of nanocrystals. Oxidation reduced the real part of complex permeability due to the reduction of the relative volume of the powder, which otherwise contributes to the permeability. Oxidation reduced the absorption efficiency of the sheet at frequencies over 1GHz, indicating that the relative contribution of skin depth increments to the absorption was not significant. The pulverization and milling process lowered the optimum crystallization temperature of the material by $40{\sim}50^{\circ}C$ because of the internal energy accumulated during the fragmentation and powder thinning processes.

Synthesis, Structures and Properties of Three Metal-organic Frameworks Based on 3-(4-((1H-imidazol-1-yl)methyl)phenyl)acrylic Acid

  • Liang, Peng;Ren, Tian-Tian;Tian, Wei-Man;Xu, Wen-Jia;Pan, Gang-Hong;Yin, Xian-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.182-188
    • /
    • 2014
  • Three new transition metal complexes based on Ozagrel $[Cu(Ozagrel)]_n$ (1), $[Zn(Ozagrel)(Cl)]_n$ (2), ${[Mn_2-(Ozagrel)(1,4-ndc)_2]{\cdot}(H_2O)}_n$ (3), (Ozagrel = 3-(4-((1H-imidazol-1-yl)methyl)phenyl)acrylic acid; 1,4-ndc = 1,4-Naphthalenedicarboxylic acid) have been hydrothermally synthesized and characterized by elemental analyse, IR, TG, PXRD, electrochemical analysis and single crystal X-ray diffraction. X-ray structure analysis reveals that 1 and 3 are 3D coordination polymers, while complex 2 is a two-dimensional network polymer, the 2D layers are further packed into 3D supramolecular architectures that are connected through hydrogen bonds. The electrochemistry of 1-3 was studied by cyclic voltammetry in methanol and water using a glassy carbon working electrode. Also, thermal decomposition process and powder X-ray diffraction of complexes were investigated.

Electromagnetic Wave Absorption Characteristics of Y-type Barium Ferrite Prepared by the Glass-ceramic Method

  • Miki, Hiroki;Hori, Chinatsu;Nagae, Masahiro;Yoshio, Tetsuo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1179-1180
    • /
    • 2006
  • Y-type barium ferrite ($Ba_2Me_2Fe_{12}O_{22};$ Me=Zn, Co, Cu) expected as an electromagnetic wave absorber were prepared by the glass-ceramic method. The glasses with composition of $0.1ZnO{\cdot}0.9(xB_2O_3{\cdot}yBaO{\cdot}(1-x-y)Fe_2O_3)$ were prepared. Single-phase powders of Y type barium ferrite were obtained with the composition $0.1ZnO{\cdot}0.9(0.2B_2O_3{\cdot}0.5BaO{\cdot}0.3Fe_2O_3)$. The shape of Y-type crystals depended strongly on the heating temperature and changed from a plate-like hexagon to a complex polyhedron with increasing heating temperature. Correlation was recognized between saturation magnetization and crystal shape. Electromagnetic wave absorption characteristics was affected by the saturation magnetization and crystal shape.

  • PDF

Determination of Ultra Trace Levels of Copper in Whole Blood by Adsorptive Stripping Voltammetry

  • Attar, Tarik;Harek, Yahia;Larabi, Lahcen
    • 대한화학회지
    • /
    • 제57권5호
    • /
    • pp.568-573
    • /
    • 2013
  • A selective and sensitive method for simultaneous determination of copper in blood by adsorptive differential pulse cathodic stripping voltammetry is presented. The procedure involves an adsorptive accumulation of Cu(II)-ETSC (4- ethyl-3-thiosemicarbazide) on a hanging mercury drop electrode, followed by a stripping voltammetry measurement of reduction current of adsorbed complex at about -715 mV. The optimum conditions for the analysis of copper (II) ion are : pH 10.3, concentration of 4-ethyl-3-thiosemicarbazide $3.25{\times}10^{-6}$ M and an accumulation potential of -100 mV. The peak current is proportional to the concentration of copper over the range 0.003-125 ng/mL with a detection limit of 0.001 ng/mL and an accumulation time of 60 s. Moreover, with the use of the proposed method, there is a considerable improvement in the detection limit, the linear dynamic range and the deposition time, compared with the methods of adsorptive stripping voltammetry for the determination of copper. The developed method was validated by analysis of whole blood certified reference materials.

Toxicity Evaluation of Complex Metal Mixtures Using Reduced Metal Concentrations: Application to Iron Oxidation by Acidithiobacillus ferrooxidans

  • Cho, Kyung-Suk;Ryu, Hee-Wook;Choi, Hyung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권7호
    • /
    • pp.1298-1307
    • /
    • 2008
  • In this study, we investigated the inhibition effects of single and mixed heavy metal ions ($Zn^{2+},\;Ni^{2+},\;Cu^{2+},\;and\;Cd^{2+}$) on iron oxidation by Acidithiobacillus ferrooxidans. Effects of metals on the iron oxidation activity of A. ferrooxidans are categorized into four types of patterns according to its oxidation behavior. The results indicated that the inhibition effects of the metals on the iron oxidation activity were noncompetitive inhibitions. We proposed a reduced inhibition model, along with the reduced inhibition constant ($\alpha_i$), which was derived from the inhibition constant ($K_I$) of individual metals and represented the tolerance of a given inhibitor relative to that of a reference inhibitor. This model was used to evaluate the toxicity effect (inhibition effect) of metals on the iron oxidation activity of A. ferrooxidans. The model revealed that the iron oxidation behavior of the metals, regardless of metal systems (single, binary, ternary, or quaternary), is closely matched to that of any reference inhibitor at the same reduced inhibition concentration, $[I]_{reduced}$, which defines the ratio of the inhibitor concentration to the reduced inhibition constant. The model demonstrated that single metal systems and mixed metal systems with the same reduced inhibitor concentrations have similar toxic effects on microbial activity.

진단감응 로다민 색소센서재료 합성 및 특성 분석 (Synthesis and Properties of Rhodamine Dye Sensor Material toward detection Response)

  • 김형주;이도현;손영아
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2011년도 제45차 학술발표회
    • /
    • pp.34-34
    • /
    • 2011
  • Recently, people have concerned about environmental pollution. This environmental pollution occur due to many reasons such as heavy metal ions and anions. In this regard, many researchers have studied organic materials to monitor above reasons to protect environmental pollution. One of the organic materials for this function is chemosensor. This chemosensor has been studied and reported about monitoring toxic heavy metal ions and anions. In this study, the dye sensor was designed and synthesized through reaction of Rhodamine 6G and 1,3-Indanedion. this dye sensor selective detected $Hg^{2+}$ metal ions while showing red color absorption and yellowish-green strong fluorescence emission compared to other heavy metal ions such as $Cu^{2+}$, $Hg^{2+}$, $Ag^{2+}$, $Zn^{2+}$, $Fe^{2+}$ and $Fe^{3+}$. In this regard, we anticipated that this dye senosr can provide an significant material for monitoring mercury which cause environmental pollution. Thus, We investigated detailed properties of this dye sesnor with using UV-Vis absorption and fluorescent spectrophotometer, Job's plot method for metal binding complex, computational simulated calculation named Material Studio 4.3 suite to approach for electron distribution and HOMO/LUMO.

  • PDF

The structures and catalytic activities of metallic nanoparticles on mixed oxide

  • 박준범
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.339-339
    • /
    • 2010
  • The metallic nanoparticles (Pt, Au, Ag. Cu, etc.) supported on ceria-titania mixed oxide exhibit a high catalytic activity for the water gas shift reaction ($H_2O\;+\;CO\;{\leftrightarrow}\;H_2\;+\;CO_2$) and the CO oxidation ($O_2\;+\;2CO\;{\leftrightarrow}\;2CO_2$). It has been speculated that the high catalytic activity is related to the easy exchange of the oxidation states of ceria ($Ce^{3+}$ and $Ce^{4+}$) on titania, but very little is known about the ceria titanium interaction, the growth mode of metal on ceria titania complex, and the reaction mechanism. In this work, the growth of $CeO_x$ and Au/$CeO_x$ on rutile $TiO_2$(110) have been investigated by Scanning Tunneling Microscopy (STM), Photoelectron Spectroscopy (PES), and DFT calculation. In the $CeO_x/TiO_2$(110) systems, the titania substrate imposes on the ceria nanoparticles non-typical coordination modes, favoring a $Ce^{3+}$ oxidation state and enhancing their chemical activity. The deposition of metal on a $CeO_x/TiO_2$(110) substrate generates much smaller nanoparticles with an extremely high activity. We proposed a mechanism that there is a strong coupling of the chemical properties of the admetal and the mixed-metal oxide: The adsorption and dissociation of water probably take place on the oxide, CO adsorbs on the admetal nanoparticles, and all subsequent reaction steps occur at the oxide-admetal interface.

  • PDF

Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes

  • Raman, N.;Sakthivel, A.;Rajasekaran, K.
    • Mycobiology
    • /
    • 제35권3호
    • /
    • pp.150-153
    • /
    • 2007
  • New $N_2O_2$ donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and $^1H$ NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of $10{\sim}31{\mu}g/ml$.

초단펄스 응용 전해증착에 의한 마이크로 구조물 제작 (Microfabrication by Localized Electrochemical Deposition Using Ultra Short Pulses)

  • 박정우;류시형;주종남
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.186-194
    • /
    • 2004
  • In this research, microfabrication technique using localized electrochemical deposition (LECD) with ultra short pulses is presented. Electric field is localized near the tool tip end region by applying a few hundreds of nano second pulses. Pt-Ir tip is used as a counter electrode and copper is deposited on the copper substrate in 0.5 M CuSO$_4$ and 0.5 M H$_2$SO$_4$ electrolyte. The effectiveness of this technique is verified by comparison with LECD using DC voltage. The deposition characteristics such as size, shape, surface, and structural density according to applied voltage and pulse duration are investigated. The proper condition is selected from the results of the experiments. Micro columns less than 10 $\mu$m in diameter are fabricated using this technique. The real 3D micro structures such as micro pattern and micro spring can be fabricated by this method. It is suggested that presented method can be used as an easy and inexpensive method for fabrication of microstructure with complex shape.