• Title/Summary/Keyword: Cu(II) complex

Search Result 225, Processing Time 0.021 seconds

Mineralogy and Geochemistry of the Jeonheung and Oksan Pb-Zn-Cu Deposits, Euiseong Area (의성(義城)지역 전흥(田興) 및 옥산(玉山) 열수(熱水) 연(鉛)-아연(亞鉛)-동(銅) 광상(鑛床)에 관한 광물학적(鑛物學的)·지화학적(地化學的) 연구(硏究))

  • Choi, Seon-Gyu;Lee, Jae-Ho;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.417-433
    • /
    • 1992
  • Lead-zinc-copper deposits of the Jeonheung and the Oksan mines around Euiseong area occur as hydrothermal quartz and calcite veins that crosscut Cretaceous sedimentary rocks of the Gyeongsang Basin. The mineralization occurred in three distinct stages (I, II, and III): (I) quartz-sulfides-sulfosalts-hematite mineralization stage; (II) barren quartz-fluorite stage; and (III) barren calcite stage. Stage I ore minerals comprise pyrite, chalcopyrite, sphalerite, galena and Pb-Ag-Bi-Sb sulfosalts. Mineralogies of the two mines are different, and arsenopyrite, pyrrhotite, tetrahedrite and iron-rich (up to 21 mole % FeS) sphalerite are restricted to the Oksan mine. A K-Ar radiometric dating for sericite indicates that the Pb-Zn-Cu deposits of the Euiseong area were formed during late Cretaceous age ($62.3{\pm}2.8Ma$), likely associated with a subvolcanic activity related to the volcanic complex in the nearby Geumseongsan Caldera and the ubiquitous felsite dykes. Stage I mineralization occurred at temperatures between > $380^{\circ}C$ and $240^{\circ}C$ from fluids with salinities between 6.3 and 0.7 equiv. wt. % NaCl. The chalcopyrite deposition occurred mostly at higher temperatures of > $300^{\circ}C$. Fluid inclusion data indicate that the Pb-Zn-Cu ore mineralization resulted from a complex history of boiling, cooling and dilution of ore fluids. The mineralization at Jeonheung resulted mainly from cooling and dilution by an influx of cooler meteoric waters, whereas the mineralization at Oksan was largely due to fluid boiling. Evidence of fluid boiling suggests that pressures decreased from about 210 bars to 80 bars. This corresponds to a depth of about 900 m in a hydrothermal system that changed from lithostatic (closed) toward hydrostatic (open) conditions. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=2.9{\sim}9.6$ per mil) indicate that the ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids was ${\approx}8.6$ per mil. This ${\delta}^{34}S_{{\Sigma}S}$ value is likely consistent with an igneous sulfur mixed with sulfates (?) in surrounding sedimentary rocks. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values. Equilibrium thermodynamic interpretation indicates that the temperature versus $fs_2$ variation of stage I ore fluids differed between the two mines as follows: the $fs_2$ of ore fluids at Jeonheung changed with decreasing temperature constantly near the pyrite-hematite-magnetite sulfidation curve, whereas those at Oksan changed from the pyrite-pyrrhotite sulfidation state towards the pyrite-hematite-magnetite state. The shift in minerals precipitated during stage I also reflects a concomitant $fo_2$ increase, probably due to mixing of ore fluids with cooler, more oxidizing meteoric waters. Thermodynamic consideration of copper solubility suggests that the ore-forming fluids cooled through boiling at Oksan and mixing with less-evolved meteoric waters at Jeonheung, and that this cooling was the main cause of copper deposition through destabilization of copper chloride complexes.

  • PDF

Geochemical Environments of Copper-bearing Ore Mineralization in the Haman Mineralized Area (함안지역 함 동 광화작용의 지화학적 환경)

  • Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The Haman mineralized area is located within the Cretaceous Gyeongsang Basin along the southeastern part of the Korean peninsula. Almost all occurrences in the Haman area are representative of copper-bearing polymetallic hydrothermal vein-type mineralization. Within the area are a number of fissure-filling hydrothermal veins which contain tourmaline, quartz and carbonates with Fe-oxide, base-metal sulfide and sulfosalt minerals. The Gunbuk, Jeilgunbuk and Haman mines are each located on such veins. The ore and gangue mineral paragenesis can be divided into three distinct stages: Stage I, tourmaline + quartz + Fe-Cu ore mineralization; Stage II, quartz + sulfides + sulfosalts + carbonates; Stage III, barren calcite. Equilibrium thermodynamic data combined with mineral paragenesis indicate that copper minerals precipitated mainly within a temperature range of $350^{\circ}C$ to $250^{\circ}C$. During early mineralization at $350^{\circ}C$, significant amounts of copper ($10^3$ to $10^2\;ppm$) could be dissolved in weakly acid NaCl solutions. For late mineralization at $250^{\circ}C$, about $10^0$ to $10^{-1}\;ppm$ copper could be dissolved. Equilibrium thermodynamic interpretation indicates that the copper in the Haman-Gunbuk systems could have been transported as a chloride complex and the copper precipitation occurred as a result of cooling accompanied by changes in the geochemical environments ($fs_2$, $fo_2$, pH, etc.) resulting in decrease of solubility of copper chloride complexes.

Formation and Dissociation Kinetics of Zinc(II) Complexes of Tetraaza-Crown-Alkanoic Acids (Zinc(Ⅱ) Tetraaza-Crown-Allkanoic Acids 착물의 형성 및 해리 반응속도론)

  • Choi, Ki Young;Kim, Dong Won;Kim, Chang Suk;Park, Byung Bin;Choi, Suk Nam;Hong, Choon Pyo;Ryu, Hae Il
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.5
    • /
    • pp.403-409
    • /
    • 2000
  • The formation and dissociation rates of $Zn^{2+}$ Complexes with l,4,7,10-tetraaza-13,16-diox-acyclooctadecane-N,N',N",N'"-tetraacetic acid (1), 1,4,7,10-tetraaza-13,16- dioxacyclooctadecane-N,N',N",N'"-tetramethylacetic acid (2), and 1,4,7,10-tetraaza-13,16- dioxacyclooctadecane-N,N',N",N'"-tetrapropionic acid(3) have been measured by stopped-flow and conventional spectrophotometry. Observations were made at 25.0$\pm$0.1 $^{\circ}C$ and at an ionic strength of 0.10 M NaClO$_4$. The formation reactions of $Zn^{2+}$ ion with 1 and 2 took place by the rapid formation of an intermediate complex (ZnH$_3L^+$) in which the $Zn^{2+}$ ion is incompletely coor-dinated. This might then lead to be a final product in the rate-determining step.ln the pH range 4.76-5.76, the diprotonated (H2L2-) form is the kinetically active species despite of its low concentration. The stability con-stants (log$K_{(ZnH$_3$3$L^+$)}$) and specific water-assisted rate constants (koH) of intermediate complexes have been deter-mined from the kinetic data. The dissociation reactions of $Zn^{2+}$ complexes of 1,2, and 3 were investigated with $Cu^{2+}$ ions as a scavenger in acetate buffer. All complexes exhibit acid-independent and acid-catalyzed con-tributions. The effect of buffer and $Cu^{2+}$ concentration on the dissociation rate has also been investigated. The ligand effect on t dissociation rate of $Zn^{2+}$ complexes is discussed in terms of the side-pendant armsand the chelate ring sizes of the ligands.

  • PDF

Copper Mineralization in the Haman-Gunbuk Area, Gyeongsangnamdo-Province: Fluid Inclusion and Stable Isotope Study (경상남도 함안-군북지역의 동광화작용: 유체포유물 및 안정동위원소 연구)

  • 허철호;윤성택;최상훈;최선규;소칠섭
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.75-87
    • /
    • 2003
  • The Haman-Gunbuk mineralized area is located within the Cretaceous Gyeongsang Basin along the southeastern part of the Korean peninsula. Major ore minerals, magnetite, scheelite, molybdenite and chalcopyrite, together with base-metal sulfides and minor sulfosalts, occur in fissure-filling tourmaline, quartz and carbonates veins contained within Cretaceous sedimentary and volcanic rocks anu/or granodiorite (118{\pm}$3.0 Ma). The ore and gangue mineral paragenesis can be divided into three distinct stages: Stage 1, tourmaline+quartz+Fe-Cu ore mineralization; Stage II, quartz+sulfides+sulfosalts+carbonates; Stage 111, barren calcite. Earliest fluids are recorded in stage I and early por-tions of stage II veins as hypersaline (35~70 equiv. wt.% NaCl+KCl) and vapor-rich inclusions which homogenize from ~30$0^{\circ}C$ to $\geq$50$0^{\circ}C$. The high-salinity fluids are complex chloride brines with significant concentrations of sodium, potassium, iron, copper, and sulfur, though sulfide minerals are not associated with the early mineral assemblage produced by this fluid. Later solutions circulated through newly formed fractures and reopened veins, and are recorded as lower-salinity(less than ~20 equiv. wt.% NaCl) fluid inclusions which homogenize primarily from ~200 to 40$0^{\circ}C$. The oxygen and hydrogen isotopic compositions of fluid in the Haman-Gunbuk hydrothermal system represents a progressive shift from magmatic-hydrothermal dominance during early mineralization stage toward meteoric-hydrothermal dominance during late mineralization stage. The earliest hydrothermal fiuids to circu-late within the granodiorite stock localiring the ore body at Haman-Gunbuk could have exsolved from the crystal-lizing magma and unmixed into hypersaline liquid and $H_2O$-NaCl vapor. As these magmatic fluids moved throughfractures, tourmaline and early Fe, W, Mo, Cu ore mineralization occurred without concomitant deposition of othersulfides and sulfosalts. Later solutions of dominantly meteoric origin progressively formed hypogene copper and base-metal sulfides, and sulfosalt mineralization.

Genetic Environments of Hydrothermal Copper Deposits in Ogsan Mineralized Area, Gyeongsangbukdo Province (경북 옥산지역 열수동광상의 성인연구)

  • Choi, Seon-Gyu;Choi, Sang-Hoon;Yun, Seong-Taek;Lee, Jae-Ho;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.233-243
    • /
    • 1992
  • Ore mineralization of the Hwanghak copper deposit in the Ogsan area occurred in three stages of quartz (stage I and II) and calcite (stage III) veining along fissures in Early Cretaceous sedimentary rocks. Ore minerals are pyrite, pyrrhotite, chalcopyrite (dominant), sphalerite, hematite, galena, and Ag-, Pb-, and Bi-sulfosalts. These were deposited during the first stage at temperatures between $370^{\circ}C$ and < $200^{\circ}C$ from fluids with salinities between 0.5 and 7.6 equiv. wt. % NaCl. There is evidence of boiling and this suggests pressures of less than 180 bars during the first stage. Equilibrium thermodynamic interpretation accompanying with mineral paragenesis and fluid inclusion data indicates that copper precipitation in the hydrothermal system occurred due to cooling and changing in chemical conditions ($fs_2$, $fo_2$, pH). Gradual temperature decrease from $350^{\circ}$ to $250^{\circ}C$ of ore fluids by boiling and mixing with less-evolved meteoric waters mainly led to copper deposition through destabilization of copper chloride complexes. Sulfur isotope values of sulfide minerals decrease systematically with paragenetic time from calculated ${\delta}^{34}S_{H_2S}$ values of 8.2 to 4.7‰. These values, together with the observed change from sulfide-only to sulfide-hematite assemblages and fluid inclusion data, suggest progressively more oxidizing conditions, with a corresponding increase of the $sulfate/H_2S$ ratio of hydrothermal fluids. Measured and calculated hydrogen and oxygen isotope valutls of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values.

  • PDF