• Title/Summary/Keyword: Ct-parameter

Search Result 140, Processing Time 0.023 seconds

Quantitative Evaluation of Concrete Damage by X-ray CT Methods (마이크로 포커스 X-ray CT를 이용한 콘크리트 손상균열의 정량적 평가)

  • Jung, Jahe
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.455-463
    • /
    • 2018
  • This study developed a method to quantitatively measure the size of cracks in concrete using X-ray CT images. We prepared samples with a diameter of 50 mm and a length of 100 mm by coring cracked concrete block that was obtained by chipping. We used a micro-focus X-ray CT, then applied the 3DMA method (3 Dimensional Medial axis Analysis) to the 3D CT images to find effective parameters for damage assessment. Finally, we quantitatively assessed the damage based on sample locations, using the damage assessment parameter. Results clearly show that the area near the chipping surface was damaged to a depth of 3 cm. Furthermore, X-ray methods can be used to evaluate the porosity index, burn number, and medial axis, which are used to estimate the damage to the area near the chipping surface.

Measurement of Patient Dose from Computed Tomography Using Physical Anthropomorphic Phantom (물리적 팬텀을 이용한 CT 촬영 환자의 피폭 선량 측정 및 평가)

  • Jang, Ki-Won;Lee, Choon-Sik;Kwon, Jung-Wan;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.3
    • /
    • pp.113-119
    • /
    • 2005
  • The computed tomogrpahy(CT) provides a high quality in images of human body but contributes to the relatively high patient dose. The frequency of CT examination is increasing and, therefore, the concerns about the patient dose are also increasing. In this study the experimental determination of patient dose was performed by using a physical anthropomorphic phantom and thermoluminescent dosimeter(TLD). The measurements were done for the both axial and spiral scan mode. As a result the effective doses for each scan mode were 17.78mSv and 10.01 mSv respectively and the fact that the degree of the reduction in the patient dose depends on the pitch scan parameter was confirmed. The measurement methods suggested in this study can be applied for the reassessment of the patient dose when the technique in CT equipment is developed or the protocol for CT scanning is changed.

Dose Reduction Method for Chest CT using a Combination of Examination Condition Control and Iterative Reconstruction (검사 조건 제어와 반복 재구성의 조합을 이용한 흉부 CT의 선량 저감화 방안)

  • Sang-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1025-1031
    • /
    • 2023
  • We aimed to evaluate the radiation dose and image quality by changing the Scout view voltage in low-dose chest CT (LDCT) and applying scan parameters such as AEC (auto exposure control) and ASIR (adaptive statistical iterative reconstruction) to find the optimal protocol. Scout view voltage was varied at 80, 100, 120, 140 kV and after measuring the dose 5 times using the existing low-dose chest CT protocol, the appropriate kV was selected for the study using the Dose report provided by the equipment. After taking a basic LDCT shot at 120 kV, 30 mAs, ASIR 50% was applied to this condition. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed by measuring Background noise (B/N). For dose comparison, CTDIvol and DLP provided by the equipment were compared and analyzed using the formulas. The results indicated that the protocol of scout 140 + LDCT + ASIR 50 + AEC reduced radiation exposure and improved image quality compared to traditional LDCT, providing an optimal protocol. As demonstrated in the experiment, LDCT screenings for asymptomatic normal individuals are crucial, as they involve concerns over excessive radiation exposure per examination. Therefore, applying appropriate parameters is important, and it is expected to contribute positively to the public health in future LDCT based health screenings.

Probabilistic Characteristics of Fatigue Behavior Parameter of Paris-Erdogan Law in Mg-Al-Zn Alloy (Mg-Al-Zn 합금의 Paris-Erdogan 법칙에 따른 피로거동 파라미터의 확률론적 특성)

  • Choi, Seon-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.375-381
    • /
    • 2011
  • The primary aim of this study is to investigate the probabilistic characteristics of the fatigue parameters that describe the fatigue crack growth behavior in magnesium alloy. Statistical fatigue crack propagation experiments have been performed on rolled AZ31 magnesium alloy CT specimens with different specimen thickness, load ratio, and maximum load at ambient temperature in a laboratory. Using the statistical fatigue data obtained from these experiments, the goodness-of-fit of the probability distribution of the fatigue behavior parameters is evaluated in this study by performing statistical analyses. The crack growth rate coefficient is a fatigue parameter having a very large COV(Coefficient of Variation), but the variation of a crack growth rate exponent is not substantial. It is considered that a crack growth rate exponent can be a material constant. It is also found that the best fit probability distribution of the parameters such as the crack growth rate coefficient and crack growth rate exponent for a magnesium alloy is a three-parameter Weibull distribution, and two-parameter Weibull distribution is a good distribution only for the crack growth rate coefficient.

Role of PET in Evaluating Indeterminate Solitary Pulmonary Nodule with CT (CT상 악성여부가 불명확한 단일 폐결절에서의 양전자방출단층촬영술의 유용성)

  • Yoon, Seok-Boo;Choi, Joon-Young;Kim, Sun-Jung;Choi, Yong;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Sang-Eun;Kwon, O-Jung;Lee, Kyung-Soo;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.83-89
    • /
    • 1997
  • About one-third of radiologically indeterminate solitary pulmonary nodules (SPN) are eventually turned out to be malignant. It is very important to noninvasively determine whether the SPN is malignant or not for the decision of its way of management. PET imaging is highlighted by its unique ability of imaging the function and metabolism of cells. Glucose metabolism is increased in malignant transformed cells. We peformed FDG-PET studies in patients who had radiologically indeterminate SPN and compared the findings with histologic diagnoses to assess the diagnostic accuracy in the detection of malignancy and to decide which parameter is the most suitable for clinical practice among peak SUV (pSUV), average SUV (aSUV), 50/10 ratio, and time-activity curve (TAC), Thirty patients were included in this study and the most useful parameter was pSUV. The sensitivity and specificity in the detection of malignant SPN using 3.5 as a cut off pSUV were both 87%. Interestingly, all 2 false-negative cases were bronch-ioloalveolar carcinoma on histologic examination. If these cases, which could be strongly suspected by CT findings, were excluded, the sensitivity of pSUV was 100%. In conclusion, PET imaging is very helpful for determining malignancy in indeterminate SPN and pSUV is a conveniently measurable parameter which is valuable for interpretation.

  • PDF

Changes in Image Quality and Dose according to Exposure Parameters of Brain CT (두부 CT의 노출 파라메타에 따른 화질과 선량의 변화)

  • Choi, Seok yoon;Im, In Chul
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.705-711
    • /
    • 2019
  • Currently, the brain CT scan of the latest equipment lacks the study of parameter change and dose change and especially of noise, uniformity analysis and dose change. Therefore, this study attempted to study the phenomenon that occurs at this time by analyzing tube voltage, slice thickness, and pitch change in exposure parameters when using high specification CT. Experimental results show that uniformity is better when using high voltage, thick slice thickness selection, and minimum pitch. As a result of the combination, the most uniformity condition was 140 kVp, 10 mm and pitch 0.5. Noise was found to be improved regardless of pitch by increasing tube voltage and slice thickness. The radiation dose increased linearly with tube voltage and pitch. Therefore, the results of this study will serve as a reference for the use of High specification brain CT.

The Experimental Method of Measuring Q (Q의 실험적 측정법)

  • Kim, Dong-Hak;Lee, Jeong-Hyun;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.285-291
    • /
    • 2003
  • An experimental method to measure Q-parameter in-situ is described. The basic idea comes from the fact that the side necking near a crack tip indicates the loss of stress triaxiality, which can be scaled by Q. From the out-of-plane displacement and the in-plane strain near the surface of side necking, stress field averaged through the thickness is calculated and then Q is determined from the difference between the stress field and the HRR field corresponding to the identical J-integral. To prove the validity, three-dimensional finite element analysis has been performed for a CT configuration with side-groove. Q-value which was calculated directly from the near-tip stress field is compared with that determined by simulating the experimental procedure according to the proposed method, that is, the Q-value determined from the lateral displacement and the inplane strain. Also, the effect of location where the displacement and strain are measured is explored.

  • PDF

Application of Fractal Geometry on the Static Growing Crack of STS316 CT Specimen with a Side Groove (측면 홈을 가지는 STS316 CT시험편의 정적 성장균열에 대한 프랙탈 기하학의 응용)

  • Yun, Yu-Seong;Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.38-44
    • /
    • 2002
  • The application of fractal concept provides an useful method in the study for the quantitative analysis of irregular variations like the fracture surfaces and crack profiles. Fractal curves have characteristics that represents a self-similarity based on the fractal dimension. The fractal dimensions were obtained by the box counting method. In this report, we obtained the nearly stable fractal dimensions of fracture crack profiles for STS316 with CT specimen as the crack advances and the relationships between crack length and fractal dimension. Moreover fractal fracture parameter that corresponds to J-R curve is shown by the relationships between fractal dimension and crack extension. From the results, we concluded that crack extension of high toughness material also shows the fractal characteristics, which can be used in order to evaluate the crack life precisely.

Noise Reduction on Low Tube Voltage CT Images (저관전압 CT영상에서 발생되는 노이즈 제거)

  • Choi, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.63-68
    • /
    • 2017
  • To reduce the exposure dose in head CT, the use of low tube voltage is required. However, increasing noise may cause errors in the second data processing. In this study, we proposed a method to reduce noise by using low tube voltage. Experimental results show that the noise level is high at 100kVp and lowest at 140 kVp. The dose was lower at 100 kVp and higher at 140 kVp. As a result of applying the wavelet according to the threshold value, the noise value in the wavelet Th30 decreased to 4.51. Using the parameter condition(100 kVp, rotation time 0.5 sec, dose: 40.64 mGy) and the wavelet Th 30, the dose reduction of 65.3% was possible. We believe that applying the proposed method to head CT images will help to patient safety and interpret accurate information.

The Study of Effectiveness of Volume Mode in Pediatric CT (소아 전산화단층촬영에서 Volume Mode의 유용성 연구)

  • Park, Yun;Kim, Sang-Hyun
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.425-431
    • /
    • 2014
  • The purpose of this study is to analyze dose comparison and image quality evaluation according to Volume and Helical mode using ATOM Phantom. It is to actively use the Volume mode in pediatric CT examinations. There was no significant difference with Helical and Volume in the value of Noise, HU, SNR(p>0.05). All dose values was no statistical difference(p>0.05). In the value of DLP and effective dose by part, Volume mode was measured lower than Helical mode. For qualitative analysis, by scan parameter helical mode showed respectively 2.6, 3.3, 4.36 and Volume mode indicated 2.8, 3.64, 4.44 point. Image evaluation for the follow-up, Helical mode and Volume mode were respectively 3.8 and 3.83. In fact, There was no significant difference. In CT scans in children under 5 years, because 640-MDCT Volume scan dose compared with Helical mode is lower and there is no significant difference with two modes in the image quality, 640-MDCT Volume scan is thought to be useful for pediatric CT scans.