• Title/Summary/Keyword: CsI(Tl)

Search Result 60, Processing Time 0.024 seconds

MCNP-polimi simulation for the compressed-sensing based reconstruction in a coded-aperture imaging CAI extended to partially-coded field-of-view

  • Jeong, Manhee;Kim, Geehyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.199-207
    • /
    • 2021
  • This paper deals with accurate image reconstruction of gamma camera using a coded-aperture mask based on pixel-type CsI(Tl) scintillator coupled with silicon photomultipliers (SiPMs) array. Coded-aperture imaging (CAI) system typically has a smaller effective viewing angle than Compton camera. Thus, if the position of the gamma source to be searched is out of the fully-coded field-of-view (FCFOV) region of the CAI system, artifacts can be generated when the image is reconstructed by using the conventional cross-correlation (CC) method. In this work, we propose an effective method for more accurate reconstruction in CAI considering the source distribution of partially-coded field-of-view (PCFOV) in the reconstruction in attempt to overcome this drawback. We employed an iterative algorithm based on compressed-sensing (CS) and compared the reconstruction quality with that of the CC algorithm. Both algorithms were implemented and performed a systematic Monte Carlo simulation to demonstrate the possiblilty of the proposed method. The reconstructed image qualities were quantitatively evaluated in sense of the root mean square error (RMSE) and the peak signal-to-noise ratio (PSNR). Our simulation results indicate that the proposed method provides more accurate location information of the simulated gamma source than the CC-based method.

Development of a real-time gamma camera for high radiation fields

  • Minju Lee;Yoonhee Jung;Sang-Han Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.56-63
    • /
    • 2024
  • In high radiation fields, gamma cameras suffer from pulse pile-up, resulting in poor energy resolution, count losses, and image distortion. To overcome this problem, various methods have been introduced to reduce the size of the aperture or pixel, reject the pile-up events, and correct the pile-up events, but these technologies have limitations in terms of mechanical design and real-time processing. The purpose of this study is to develop a real-time gamma camera to evaluate the radioactive contamination in high radiation fields. The gamma camera is composed of a pinhole collimator, NaI(Tl) scintillator, position sensitive photomultiplier (PSPMT), signal processing board, and data acquisition (DAQ). The pulse pile-up is corrected in real-time with a field programmable gate array (FPGA) using the start time correction (STC) method. The STC method corrects the amplitude of the pile-up event by correcting the time at the start point of the pile-up event. The performance of the gamma camera was evaluated using a high dose rate 137Cs source. For pulse pile-up ratios (PPRs) of 0.45 and 0.30, the energy resolution improved by 61.5 and 20.3%, respectively. In addition, the image artifacts in the 137Cs radioisotope image due to pile-up were reduced.

Development of Signal Processing Circuit for Side-absorber of Dual-mode Compton Camera (이중 모드 컴프턴 카메라의 측면 흡수부 제작을 위한 신호처리회로 개발)

  • Seo, Hee;Park, Jin-Hyung;Park, Jong-Hoon;Kim, Young-Su;Kim, Chan-Hyeong;Lee, Ju-Hahn;Lee, Chun-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.16-24
    • /
    • 2012
  • In the present study, a gamma-ray detector and associated signal processing circuit was developed for a side-absorber of a dual-mode Compton camera. The gamma-ray detector was made by optically coupling a CsI(Tl) scintillation crystal to a silicon photodiode. The developed signal processing circuit consists of two parts, i.e., the slow part for energy measurement and the fast part for timing measurement. In the fast part, there are three components: (1) fast shaper, (2) leading-edge discriminator, and (3) TTL-to-NIM logic converter. AC coupling configuration between the detector and front-end electronics (FEE) was used. Because the noise properties of FEE can significantly affect the overall performance of the detection system, some design criteria were presented. The performance of the developed system was evaluated in terms of energy and timing resolutions. The evaluated energy resolution was 12.0% and 15.6% FWHM for 662 and 511 keV peaks, respectively. The evaluated timing resolution was 59.0 ns. In the conclusion, the methods to improve the performance were discussed because the developed gamma-ray detection system showed the performance that could be applicable but not satisfactory in Compton camera application.

Development of Radiation Sensor Based on Array SiPM for Measurement of Radioactive Contamination in Effluent (방류수의 방사능 오염 측정을 위한 배열형 SiPM 기반 방사선 검출 센서 제작)

  • Kim, Jeongho;Park, Hyemin;Joo, Koansik
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.232-236
    • /
    • 2018
  • A radiation detection sensor was developed and characterized by combining three types of CsI(Tl) scintillators and an array-type SiPM to detect the radioactive contamination of discharged water in real time. The characterization results showed that type 3 exhibited the most desirable characteristics in response linearity (R-square: 0.97889) according to detection sensitivity and incident radiation dose. Furthermore, in terms of spectral characteristics, type 3 exhibited 16.54% at 0.356 MeV (the emission gamma ray energy of $^{133}Ba$), 10.28% at 0.511 MeV (the emission gamma ray energy of $^{22}Na$), 9.68% at 0.356 MeV (the emission gamma ray energy of $^{137}Cs$), and 2.55% and 4.80% at 1.173 MeV and 1.332 MeV (the emission gamma ray energies of $^{60}Co$), respectively. These measurements confirmed the good energy characteristics. The results were used to evaluate the spectral characteristics and energy linearity in a mixed source using type 3 with the best detection characteristics. It was confirmed that the gamma ray peaks of $^{133}Ba$, $^{22}Na$, $^{137}Cs$, and $^{60}Co$ were well resolved. Moreover, it was confirmed that R-square, which is an indicator of energy linearity, was 0.99986. This indicates a good linearity characteristic. Based on this study, further commercialization studies will contribute to measurements in real time and to the management of the contamination caused by radioactive wastewater or radioactive material leakage, which originate from facilities that use radioactive isotopes or care facilities.

An Improved Movable 3 photomultiplier (3PM)-γ Coincidence Counter Using Logical Sum of Double Coincidences in β-Channel for Activity Standardization

  • Hwang, Han Yull;Lee, Jong Man
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.76-80
    • /
    • 2020
  • Background: To improve the measurement accuracy of liquid-scintillation counting for activity standardization, it is necessary to significantly reduce the background caused by thermal noise or after-pulses. We have therefore improved a movable 3 photomultiplier (3PM)-γ coincidence-counting method using the logical sum of three double coincidences for β events. Materials and Methods: We designed a new data-acquisition system in which β events are obtained by counting the logical sum of three double coincidences. The change in β-detection efficiency can be derived by moving three photomultiplier tubes sequentially from the liquid-scintillation vial. The validity of the method was investigated by activity measurement of 134Cs calibrated at the Korea Research Institute of Standards and Science (KRISS) with 4π(PC)β-γ(NaI(Tl)) coincidence counting using a proportional counter (PC) for the β detector. Results and Discussion: Measurements were taken over 14 counting intervals for each liquidscintillation sample by displacing three photomultiplier tubes up to 45 mm from the sample. The dead time in each β- and γ-counting channel was adjusted to be a non-extending type of 20 ㎲. The background ranged about 1.2-3.3 s-1, such that the contributions of thermal noise or after-pulses were negligible. As the β-detection unit was moved away from the sample, the β-detection efficiencies varied between 0.54 and 0.81. The result obtained by the method at the reference date was 396.3 ± 1.7 kBq/g. This is consistent with the KRISS-certified value of 396.0 ± 2.0 kBq/g within the uncertainty range. Conclusion: The movable 3PM-γ method developed in the present work not only succeeded in reducing background counts to negligible levels but enabled β-detection efficiency to be varied by a geometrical method to apply the efficiency extrapolation method. Compared with our earlier work shown in the study of Hwang et al. [2], the measurement accuracy has much improved. Consequently, the method developed in this study is an improved method suitable for activity standardization of β-γ emitters.

Performance Characteristic of a CsI(Tl) Flat Panel Detector Radiography System (CsI(TI) Indirect Flat Panel Detector의 선질에 따른 물리적 영상 평가)

  • Jeong, Hoi-Woun;Min, Jung-Hwan;Kim, Jung-Min;Park, Min-Seok;Lee, Gaung-Young
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.109-117
    • /
    • 2012
  • The purpose of this work was to evaluate an amorphous silicon cesium iodide based indirect flat-panel detector (FPD) in terms of their modulation transfer function (MTF), Wiener spectrum (WS, or noise power spectrum, NPS), and detective quantum efficiency (DQE). Measurements were made on flat-panel detector using the International Electrotechnical Commission (IEC) defined RQA3, RQA5, RQA7, and RQA9 radiographic technique. The MTFs of the systems were measured using an edge method. The WS(NPS) of the systems were determined for a range of exposure levels by two-dimensional (2D). Fourier analysis of uniformly exposed radiographs. The DQEs were assessed from the measured MTF, WS(NPS), exposure, and estimated ideal signal-to-noise ratios. Characteristic curve in the RQA3 showed difference in the characteristic curve from RQA5, RQA7, RQA9. MTFs were not differences according to x-ray beam quality. WS(NPS) was reduced with increasing dose, and RQA 3, RQA5, RQA7, RQA9 as the order is reduced. DQE represented the best in the 1mR, RQA 3, RQA5, RQA7, RQA9 decrease in the order. The physical imaging characteristics of FPD may also differ from input beam quality. This study gives an initial motivation that the physical imaging characteristics of FPD is an important issue for the right use of digital radiography system.

유전공학적으로 변형시킨 R-plasmid 들의 전이에 미치는 균주와 pH 의 영향

  • 김희태;이성기;김치경
    • Korean Journal of Microbiology
    • /
    • v.30 no.2
    • /
    • pp.88-95
    • /
    • 1992
  • The genetically engineered microorganisms (GEMS) could be released accidentally or ii)rexperimental purposes, as the genetic engineering, technique ha:. become very popular inany laboratories of biological sciences. But there have been littlt: informations on transkrbehavior of the genetically ~nodified genes in the natural en\ironmentx. In this stutly.antibiotic resistant bacteria were isolated from nat.ural waters. and then GEM strains wereconstructed i'rom the natural isolate (NI) by ~noclification oi' the Km' plasmitl. Thetransferability of the plasmids in the GEM and NI strains were examinetl by con-jugationin Luria-Bertani broth :it 30$^{\circ}$C. Also the cff'ccts 01' mating strain and pH on their transferfrequency and rearrangement of the plasmids in tl-~ec o~ijugantsM ere comp:irati\ely stuclictl.I'hc transkr frequency of Km' plasmid in donor of GEM and N1 strains wah similar a.;about 10 ' when co~ljugation was conducted wit11 M'I'I strain is recipient at pH 7. butthat of 1)KCOOI was lowered to 1.2X 10 '. And when the lab. stlain was uhccl as recipient.the transfer tendency of the plasmid was about same in both (;EM and NI strains usedas donor. All thc tionor 5trains. except for I)KC601. showecl the Ilighcs~ frequency of about10 ' at pH 7 and the frequcncics were lowered at both pH 5 and 9. Hut the mocliliedKm' plasmid in the cloned strain of DKC601 was transferred hy very low frequency of10 "at pH 5 ant1 7 comparing to other GEM strains. especiall! any co~~.jugantws ere notobtained at pH 4 and 9 even after conjugation for 6 hours. Rearrangement of the plasmidstranskrred into the lab. strain was not found in the conjugants. I\ulcornerut a lot of rearrangclncntwas ohservecl nlhen they were transferred into the NI strain. Such a rearrangement wasmore severe when donor was GEM strain rather then NI strain Hut such ;r phenomenonwas less affected by p!-l values.r phenomenon was less affected by p!-l values.

  • PDF

Effect of the Number of Detectors on Performance of Industrial SPECT (산업용 SPECT의 검출기 개수가 영상 해상도에 미치는 영향 평가)

  • Park, Jang Guen;Kim, Chan Hyeong;Kim, Jong Bum;Moon, Jinho;Jung, Sung-Hee
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.325-330
    • /
    • 2011
  • To predict the details of flow in industrial process unit, single photon emission computed tomography (SPECT) is a promising technique. Recently, industrial SPECT based on medical system has developed by researchers of the Korea Atomic Energy Research Institute (KAERI) and Hanyang University. In the present study, to confirm the effect of the number of detectors on image quality, and determine the optimal number of detectors in industrial SPECT, industrial SPECT system with various geometries were evaluated by the Monte Carlo simulation. CsI(Tl) detectors ($12mm{\times}12mm{\times}20mm$) with collimators (the geometric resolution of collimator $R_g$ was 4 cm at the center of the 30 cm diameter cylindrical vessel object) were modeled in a hexagonal array, and the point sources of $^{99m}Tc$, $^{68}Ga$, and $^{137}Cs$ were simulated at the center of the cylindrical vessel object using the MCNPX code. Then, the reconstruction images of each geometry were reconstructed using the expectation maximization (EM) algorithm. In this study, the reciprocity theorem was used to improve computation time required for system matrix of the EM algorithm. The result shows that the resolution of the reconstructed image was significantly improved by increasing the number of detectors in industrial SPECT system and more than 60 detectors will be required for the resolution of the reconstructed image.

Pulse pileup correction method for gamma-ray spectroscopy in high radiation fields

  • Lee, Minju;Lee, Daehee;Ko, Eunbie;Park, Kyeongjin;Kim, Junhyuk;Ko, Kilyoung;Sharma, Manish;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1029-1035
    • /
    • 2020
  • The detector suffers from pulse pileup by overlapping of the signals when it was used in high radiation fields. The pulse pileup deteriorates the energy spectrum and causes count losses due to random co-incidences, which might not resolve within the resolving time of the detection system. In this study, it is aimed to propose a new pulse pileup correction method. The proposed method is to correct the start point of the pileup pulse. The parameters are obtained from the fitted exponential curve using the peak point of the previous pulse and the start point of the pileup pulse. The amplitude at the corrected start point of the pileup pulse can be estimated by the peak time of the pileup pulse. The system is composed of a NaI (Tl) scintillation crystal, a photomultiplier tube, and an oscilloscope. A 61 μCi 137Cs check-source was placed at a distance of 3 cm, 5 cm, and 10 cm, respectively. The gamma energy spectra for the radioisotope of 137Cs were obtained to verify the proposed method. As a result, the correction of the pulse pileup through the proposed method shows a remarkable improvement of FWHM at 662 keV by 29, 39, and 7%, respectively.