• 제목/요약/키워드: Crystallographic orientation

검색결과 201건 처리시간 0.029초

고질소 2상 스테인리스강의 고온 석출거동 (High Temperature Precipitation Behavior of High-Nitrogen Duplex Stainless Steel)

  • 배종인;김성태;이태호;하헌영;김성준;박용호
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.93-103
    • /
    • 2011
  • Precipitation behavior of high-nitrogen duplex Fe-24Cr-7Mn-4Ni-4Mo-0.43N stainless steel aged at $850^{\circ}C$ was investigated using scanning transmission electron microscopy. Based on the analyses of selected area diffraction patterns, four kinds of precipitates (intermetallic sigma (${\sigma}$) and chi (${\chi}$), $Cr_2N$ and secondary austenite) were identified. At the ferrite/austenite phase boundary, the ${\sigma}$ phase and secondary austenite were formed via ${\alpha}{\rightarrow}{\gamma}+{\sigma}$ eutectoid reaction. The precipitation of $Cr_2N$ occurred at the austenite grain boundary as well as the interior of the ferrite. The intermetallic ${\chi}$ phase also formed within the ferrite and showed a cube-cube orientation relationship with the ferrite. Further aging produced a lamellar structure composed of $Cr_2N$ and austenite along the ferrite/austenite boundary and enhanced the precipitation of the ${\chi}$ phase. The crystallographic features of the precipitates were also examined in terms of the orientation relationship with the austenite or ferrite matrix.

반복변형된 동 및 동알루미늄 단결정 표면형상의 나노-스케일 관찰 (Nano-Scale Surface Observation of Cyclically Deformed Copper and Cu-Al Single Crystals)

  • 최성종;이권용
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.67-72
    • /
    • 1999
  • Scanning probe Microscope(SPM) such as Scanning Tunneling Microscope(STM) and Atomic Force Microscope(AFM) was shown to be the powerful tool for nano-scale characterization of material surfaces Using this technique, surface morphology of the cyclically deformed Cu or Cu-Al single crystal was observed. The surface became proportionately rough as the number of cycles increased, but after some number of cycles no further change was observed. Slip steps with the heights of 100 to 200 nm and the widths of 1000 to 2000 nm were prevailing at the stage. The slipped distance of one slip system at the surface was not uniform. and formation of the extrusions or intrusions was assumed to occur such place. By comparing the morphological change caused by crystallographic orientation, strain amplitude, number of cycles or stacking fault energy, some interesting results which help to clarify the basic mechanism of fatigue damage were obtained. Furthermore, applicability of the scanning tunneling microscopy to fatigue damage is discussed.

  • PDF

Thin Film Growth and Evaluation Method for Conventional Co-Cr Based Perpendicular Magnetic Recording Media: Problems and New Solutions

  • Saito, Shin;Hoshi, Fumikazu;Hasegawa, Daiji;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • 제7권3호
    • /
    • pp.115-125
    • /
    • 2002
  • We proposed a novel method to evaluate the magnetic properties of the initial layer and the columnar structure separately for CoCr-based perpendicular recording media. We show that the thickness of the initial layer and the intrinsic magnetocrystalline anisotropy of columnar structure can be quantitatively evaluated using the plotted product of perpendicular anisotropy to magnetic film thickness versus magnetic film thickness ($K_{u{\bot}}^{ex{p.}}$ $\times$ d$_{mag.}$ vs. d$_{mag.}$ plot). Based on the analyses, it is found that: (1) compared with CoCrPtTa media, CoCrPtB media have relatively thin initial layer, and have fine grains with homogeneous columnar structure with c-plane crystallographic orientation; (2) CoCrPtB media can be grown epitaxially on Ru or CoCr/C intermediate layer, and as the result, the magnetic properties of the media within thin thickness region of d$_{mag.}$ $\leq$ 20 nm is significantly improved; (3) the key issue of material investigation for CoCr-based perpendicular recording media will be focused on how to fabricate c-plane-oriented columnar grains well isolated with nonmagnetic substance in epitaxial-growth media, while maintaining the thermal stability of the media.

Ga의 도핑농도에 따른 ZnO 박막의 특성 (Effects of Doping Concentration on the Properties of Ga-doped ZnO Thin Films Prepared by RF Magnetron Sputtering)

  • 김형민;마대영;박기철
    • 한국전기전자재료학회논문지
    • /
    • 제25권12호
    • /
    • pp.984-989
    • /
    • 2012
  • We have investigated the structural, electrical and optical properties of Ga-doped ZnO (GZO) thin films prepared by RF magnetron sputtering with laboratory-made ZnO targets containing 1, 3, 5, 7 wt% of $Ga_2O_3$ powder as a doping source. The GZO thin films show the typical crystallographic orientation with c-axis regardless of $Ga_2O_3$ content in the targets. The $3,000{\AA}$ thick GZO thin films with the lowest resistivity of $7{\times}10^{-4}{\Omega}{\cdot}cm$ are obtained by using the GZO ($Ga_2O_3$= 5 wt%) target. Optical transmittance of all films shows higher than 80% at the visible region. The optical energy band gap for GZO films increases as the carrier concentration ($n_e$) in the film increases.

Electromigration and Thermomigration in Flip-Chip Joints in a High Wiring Density Semiconductor Package

  • Yamanaka, Kimihiro
    • 마이크로전자및패키징학회지
    • /
    • 제18권3호
    • /
    • pp.67-74
    • /
    • 2011
  • Keys to high wiring density semiconductor packages include flip-chip bonding and build-up substrate technologies. The current issues are the establishment of a fine pitch flip-chip bonding technology and a low coefficient of thermal expansion (CTE) substrate technology. In particular, electromigration and thermomigration in fine pitch flipchip joints have been recognized as a major reliability issue. In this paper, electromigration and thermomigration in Cu/Sn-3Ag-0.5Cu (SAC305)/Cu flip-chip joints and electromigration in Cu/In/Cu flip chip joints are investigated. In the electromigration test, a large electromigration void nucleation at the cathode, large growth of intermetallic compounds (IMCs) at the anode, a unique solder bump deformation towards the cathode, and the significantly prolonged electromigration lifetime with the underfill were observed in both types of joints. In addition, the effects of crystallographic orientation of Sn on electromigration were observed in the Cu/SAC305/Cu joints. In the thermomigration test, Cu dissolution was accelerated on the hot side, and formation of IMCs was enhanced on the cold side at a thermal gradient of about $60^{\circ}C$/cm, which was lower than previously reported. The rate of Cu atom migration was found comparable to that of electromigration under current conditions.

Multi-crystalline Silicon Solar Cell with Reactive Ion Etching Texturization

  • Park, Seok Gi;Kang, Min Gu;Lee, Jeong In;Song, Hee-eun;Chang, Hyo Sik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.419-419
    • /
    • 2016
  • High efficiency silicon solar cell requires the textured front surface to reduce reflectance and to improve the light trapping. In case of mono-crystalline silicon solar cell, wet etching with alkaline solution is widespread. However, the alkali texturing methods are ineffective in case of multi-crystalline silicon wafer due to grain boundary of random crystallographic orientation. The acid texturing method is generally used in multi-crystalline silicon wafer to reduce the surface reflectance. However the acid textured solar cell gives low short-circuit current due to high reflectivity while it improves the open-circuit voltage. To reduce the reflectivity of multi-crystalline silicon wafer, double texturing method with combination of acid and reactive ion etching is an attractive technical solution. In this paper, we have studied to optimize RIE experimental condition with change of RF power (100W, 150W, 200W, 250W, 300W). During experiment, the gas ratio of SF6 and O2 was fixed as 30:10.

  • PDF

Effect of Stress of MgO protecting layer on Discharge Characteristics of AC-PDP

  • Lee, Mi-Jung;Park, Sun-Young;Kim, Soo-Gil;Kim, Hyeong-Joon;Moon, Sung-Hwan;Kim, Jong-Kuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.540-543
    • /
    • 2004
  • The stress of MgO thin film, which is used as a dielectric protective layer in AC-PDP, was measured by a laser scanning method. MgO films were deposited bye-beam evaporation on glass substrates with dielectrics layer on them in various deposition temperatures ranging from room temperature to 300 $^{\circ}C$. The compressive stress of MgO films was increased with increasing substrate temperature due to intrinsic stress accumulation, causing the densification of the films. Both firing voltage ($V_f$) and sustaining voltage ($V_s$) were reduced for the higher compressively stressed and densified films. In the other hand, another film properties such as preferred crystallographic orientation and surface roughness seemed not to influence the discharge characteristics of $V_f$ and $V_s$ significantly.

  • PDF

고온변형 중의 AZ80 마그네슘 합금의 미세조직 형성 거동에 미치는 변형속도의 영향 (Effect of Strain Rate on Microstructure Formation Behaviors of AZ80 Magnesium Alloy During High-temperature Deformation)

  • 박민수;김권후
    • 열처리공학회지
    • /
    • 제33권4호
    • /
    • pp.180-184
    • /
    • 2020
  • The crystallographic texture plays an important role in both the plastic deformation and the macroscopic anisotropy of magnesium alloys. In previous study for AZ80 magnesium alloy, it was found that the main texture components of the textures vary with the deformation conditions at high temperatures. Also, the basal texture was formed at stress of more than 15-20 MPa and the non-basal texture was formed at stress of less than 15-20 MPa. Therefore, in this study, uniaxial compression deformation of AZ80 magnesium alloy was carried out at high temperature (stress of 15-20 MPa). The uniaxial compression deformation is performed at temperature of 723 K and strain rate 3.0 × 10-3s-1, with a strain range of between -0.4 and -1.3. Texture measurement was carried out on the compression planes by the Schulz reflection method using nickel filtered Cu Kα radiation. EBSD measurement was also conducted in order to observe spatial distribution of orientation. As a result of high temperature deformation, the main component of texture and its development vary depending on deformation condition of this study.

고효율 태양전지 제작을 위한 레이저 텍스쳐링 연구 (Study on laser texturing process for fabrication of high efficiency solar cell)

  • 고지수;정한욱;공대영;이원백;김광열;신성욱;박홍진;최병덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.143-146
    • /
    • 2009
  • One of the most important issues of crystalline silicon solar cell is minimizing reflectance at the surface. Laser texturing is an isotropic process that will sculpt the surface of a silicon wafer, regardless of its crystallographic orientation. We investigated surface texturing process using Nd-YAG laser ($\lambda$=1064 nm) on multi-crystalline silicon wafer. Removal of slag formed after the laser process was performed using acid solution (HF : $HNO_3$ : $CH_3COOH$ : DI water). The reflectance and carrier lifetime of the samples were measured and analyzed using UV-Vis spectrophotometer and carrier lifetime tester. It was found that the minimum reflectance of the samples was 16.39% and maximum carrier life time was $21.8\;{\mu}s$.

  • PDF

페그마타이트에서 산출하는 전기석의 운모화작용: 고분해능 투과전자현미경(HRTEM) 연구 (Sericitization of Tourmaline in a Pegmatite: a HRTEM Study)

  • 안중호;이정후
    • 한국광물학회지
    • /
    • 제9권1호
    • /
    • pp.7-16
    • /
    • 1996
  • Partially sericitized tourmaline from a pegmatite, Black Hills, South Dakota, U.S.A., was investigated using high-resolution transmission electron microscopy (HRTEM). Muscovite occurs as the only alteration product of tourmaline, and it is developed extensively as narrow veinlets along the {110} and {100} cleavage directions of tourmaline, indicating that a cleavage-controlled alteration mechanism was dominant. Muscovite was characterized mainly as two-layer polytypes with minor stacking disorder, but tourmaline is almost free of structural defects. HRTEM images of tourmaline-muscovite interfaces revealed that the interfaces between two minerals are composed of well-defined {110} and {100} boundaries of tourmaline. The (001) of muscovite is in general parallel to the c-axis of tourmaline, but tourmaline and replacing muscovite do not show specific crystallographic orientation relationship; muscovite consists of numerous 100-1000$\AA$ thick subparallel packets, and the angles between the (001) of muscovite and (110) of tourmaline is highly variable. Al/Si ratios of both minerals suggest that tourmaline to muscovite alteration by late magnetic fluids has been facilitated by their similar Al/Si ratio in the incipient alteration stage, in that the hydration reaction with preservation of Al and Si would require only addition of K+ and H2O. Aluminous minerals other than muscovite were not characterized as the alteration products of tourmaline, indicating that tourmaline reacted directly to muscovite; the tourmaline alteration apparently occurred by the presence of residual fluids in which K+ is available and silica was not undersaturated.

  • PDF