• Title/Summary/Keyword: Crystallization temperature(Tc)

Search Result 9, Processing Time 0.021 seconds

Preparation of Fine Single-Crystalline Particles of Ferroxplana, $Ba_2Co_2Fe_{12}O_{22}$ from Crystallization of Glass (유리결정화에 의한 Ferroxplana $Ba_2Co_2Fe_{12}O_{22}$ 미세 단결정의 제조)

  • 김성재;김동호;이재동;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.236-242
    • /
    • 1993
  • As the fundamental research on preparation of fine single crystalline ferroxaplana by means of glass-crystallization methods using steel twin-roller, the properties of ferroxplana crystallized from glass were studied. Most of the specimens quenched by twin-roller at about 130$0^{\circ}C$ were glass phase, the crystallization of these glasses underwent multi-steps and ferroxplana phase was only stable in the temperature range of 88$0^{\circ}C$ to 95$0^{\circ}C$. Above 95$0^{\circ}C$ ferroxplana begines to be decomposed in glass. Ferroxplana had such magnetic properties as M8=29emu/g, MHC=166Oe, and Curie Temperature, Tc=610$\pm$5K.

  • PDF

Preparation of Fine Single-Crystalline Particles of Ferroxplana, Ba2Zn2Fe12O22 from Crystallization of Glass (유리결정화에 의한 Ferroxplana Ba2Zn2Fe12O22 미세 단결정의 제조)

  • 김성재;김동호;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.765-772
    • /
    • 1992
  • As the fundamental research of preparation of fine single crystalline ferroxplana by means of glass-crystallization methods using steel twin-roller the properties of ferroxplana extracted from cyrstallized glass were studied. Most of all the specimens quenched by twin-roller at about 1350$^{\circ}C$ were glass phase, the crystallization of these glass had multi-steps and ferroxplana phase was only stable untill 900$^{\circ}C$, began to be decomposed from about 950$^{\circ}C$ in glass. The morphology of particle could be controlled by the composition and crystallization condition, and Zn2+ was replaced by reduced Fe2+ which is 2∼3% contents of total Fe. Ferroxplana extracted had such magnetic properties as Ms=34 emu/g, mHc=10 Oe and Curie Temperature, Tc=425K.

  • PDF

Preparasion and Characterization of Chalcogenide Glass with IR-Transmittance (적외 광투과 Chalcogenide계 유리의 제조 및 특성)

  • 송순모;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1424-1432
    • /
    • 1995
  • Chalcogenide glasses having IR (8~12${\mu}{\textrm}{m}$) transmittance were prepared and their densities, thermal and mechanical properties, IR-transmittances and chemical durabilities were determined. Glass transition temperatures (Tg) of Ge-As-Se, Ge-As-Se-Te and Ge-SE-Te system glasses were in the range of 280~3$65^{\circ}C$, 210~236$^{\circ}C$ and 210~26$0^{\circ}C$, respectively. Crystallization temperature (Tc) of Ge-Se-Te system glass was in the range of 305~40$0^{\circ}C$. Their thermal expansion coefficients($\alpha$) were in the range of 11.7~15.2$\times$10-6/K, 15.4~16.0$\times$10-6/K and 17.4~27.8$\times$10-6/K, respectively. Their MOR, hardness and fracture toughness were in the range of 15.2~18.6MPa, 36.1~58.2Kg/$\textrm{mm}^2$, 1.0~1.3 MPa.mm1/2, 18.9~24.9 MPa, 40.9~65.1Kg/$\textrm{mm}^2$, 1.3~1.5 MPa.mm1/2, and 24.1~30.8 MPa, 40.9~86.0Kg/$\textrm{mm}^2$, 1.4~1.8 MPa.mm1/2, respectively. IR transmittance of Ge-Se-Te system glass was about 60%. Ge-O extrinsic absorption peaks at 8, 12 ${\mu}{\textrm}{m}$ were significantly eliminated by the addition of Mg. Chemical durabilities in deionizied water of Ge-Se-Te system glass were good and IR-transmittances decreased with leaching time and temperature.

  • PDF

The Phase Transition with Electric Field in Ternary Chalcogenide Thin Films

  • Yang, Sung-Jun;Lee, Jae-Min;Shin, Kyung;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.185-188
    • /
    • 2004
  • Phase transitions from the amorphous to crystalline states, and vice versa, of GST(GeSbTe) and AST(AsSbTe) thin films by applying electrical pulses have been studied. These materials can be used as nonvolatile memory devices. The thickness of ternary chalcogenide thin films is approximately 100 nm. Upper and lower electrodes were made of AI. I-V characteristics after impressing the variable pulses to GST and AST films. Tc(crystallization temperature) of AST system is lower than that of the GST system, so that the current pulse width of crystallization process can be decreased.

Hall Effect and Resistivity of Amorphous $Fe_{83-x}Zr_{7}B_{10}Nb_{x}$ Alloys

  • Lee, Soo-Hyung;Yu, Seong-Cho;Xu, Jun-Hau;Rao, K.V.;Noh, Tae-Hwan;Kang, Il-Koo;Rhie, Kungwon
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.841-845
    • /
    • 1995
  • The effect of small addition of Nb on the electrical resistivity and Hall coeffcient of the amorphous $Fe_{83}Zr_{7}B_{10}$ alloy and annealed ones ones below the crystallization temperature were investigated, which has been considered to be suitable for high frequency core material. At room temperature, their resistivities $\rho$ and the spontaneous Hall coeffcients $R_{s}$ are $~1.6\;{\mu}{\Omega}m$ and $~3{\times}10^{-8}m^{3}/As$, respectively. $R_{s}$ and $\rho$ are decreased with increasing temperature from 100 K to room temperature. Side-jump effect was adopted to analyze the effect of the small variation of conentration and annealing. The quantity of $R_{s}/{\rho}^{2}$ at room temperature, which is directly related to the electronic structure of the mother alloy, remained almost a constant except as quenched one as it can be predicted from the side-jump effect. The unexpected temperature dependence of $R_{s}/{\rho}^{2}$ measured at low fields much below Tc is left as a question.

  • PDF

Addition Effects of Alkali Metal Oxide on Some Properties of Porous Glass-Ceramics in the $CaO-TiO_2-P_2O_5$ System ($CaO-TiO_2-P_2O_5$계 다공질 결정화 유리의 물성에 미치는 알카리 금속 산화물의 첨가효과)

  • 장순규;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1337-1345
    • /
    • 1994
  • Glasses in the system of 45CaO-25TiO2-30P2O5 containing 1 mole% of M2O(M=Li, Na, K) were melted and crystallized. And their crystal phases were Ca3(PO4)2, CaTi4(PO4)6, and TiO2. Porous glass-ceramics with skeleton of two crystal phase CaTi4(PO4)6 and TiO2 were prepared by selective leaching of Ca3(PO4)2 with 0.1 N-HCl. Glass transition temperature(Tg) and crystallization temperature(Tc) were decreased by addition of 1 mole% alkali metal oxide. Pore size of porous glass-ceramics was increased with increasing heat treatment temperature and its dependence on heat treatment temperature was decreased with addition of Na2O and K2O. It was found that porous glass-ceramics of parent glass and containing 1mole% M2O(M=Li, Na, K) composition had maximum specific surface area, porosity and maximum of crystallzed phase by heat treatment at 80$0^{\circ}C$, 76$0^{\circ}C$, 78$0^{\circ}C$, 80$0^{\circ}C$ respectively.

  • PDF

Magnetic Properties of YBCO Superconductor Bulk Materials (YBCO 초전도체 Bulk 소재에 대한 자기적 특성)

  • Lee, Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.147-150
    • /
    • 2020
  • Relatively pure YBCO was first synthesized by heating a mixture of metal carbonates at temperatures between 1,000 and 1,300 K, resulting in the reaction: 4BaCO3+Y2(CO3)3+6CuCO3+(1/2-x)O2 → 2YBa2Cu3O7-x+1/3CO2. Modern syntheses of YBCO use the corresponding oxides and nitrates. The superconducting properties of YBa2Cu3O7-x are sensitive to the value of x, i.e., its oxygen content. Only those materials with 0≤x≤0.65 are superconducting below Tc, and when x ~ 0.07, the material superconducts at the highest temperature, i.e., 95 K, or in the highest magnetic fields, i.e., 120 T and 250 T when B is perpendicular and parallel to the CuO2 planes, respectively. In addition to being sensitive to the stoichiometry of oxygen, the properties of YBCO are influenced by the crystallization methods applied. YBCO is a crystalline material, and the best superconductive properties are obtained when crystal grain boundaries are aligned by careful control of annealing and quenching temperature rates. However, these alternative methods still require careful sintering to produce a quality product. New possibilities have arisen since the discovery of trifluoroacetic acid, a source of fluorine that prevents the formation of undesired barium carbonate (BaCO3). This route lowers the temperature necessary to obtain the correct phase at around 700℃. This, together with the lack of dependence on vacuum, makes this method a very promising way to achieve a scalable YBCO bulk.

Effects of Draw Ratio and Additive CaCO3 Content on Properties of High-Performance PE Monofilament (연신비와 첨가제 CaCO3가 PE 모노필라멘트의 물성에 미치는 영향)

  • Park, Eun-Jeong;Kim, Il-Jin;Lee, Dong-Jin;Kim, Jung-Soo;Lee, Young-Hee
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.290-296
    • /
    • 2021
  • The effect of draw ratio (8, 10, 12, 14 times) and additive CaCO3 content (0, 0.5, 1.0, 1.5, 2.0, and 3.0 wt%) on the properties of high-performance PE monofilament was investigated in this study. As the draw ratio increased (8-14 times), the melting enthalpy (ΔHf), crystallinity, specific gravity, and tensile strength increased significantly. However, the draw ratio had little effect on the melting temperature (Tm) and crystallization temperature (Tc). The seawater fastness (stain and fade) of the hydrophobic PE monofilament prepared in this study showed an excellent grade of 4-5 in all draw ratios. To investigate the effect of the additive CaCO3 content on the properties of high-performance PE monofilament, the draw ratio was fixed at 14 times. It was found that the tensile strength of the PE monofilament sample containing 0.5 wt% of CaCO3 was much greater compared to the sample without CaCO3, but the elongation of the sample containing 0.5 wt% of CaCO3 was much less than the sample with 0 wt% CaCO3. However, in the case of the sample containing more than 0.5 wt% CaCO3, the tensile strength slightly decreased and the elongation slightly increased as the CaCO3 content increased. The seawater fastness (stain and fade) of the hydrophobic PE monofilament showed excellent grades of 4-5, regardless of the amount of additives. From the above results, it was found that the maximum draw ratio of 14 times with an additive of 0.5 wt% CaCO3 are the optimal conditions for manufacturing high-performance marine fusion materials with various fineness (denier) with high strength and low elongation.

Properties of Nanocomposites Based on Polymer Blend Containing PVDF, Carbon Fiber and Carbon Nanotube (PVDF를 포함한 고분자 블렌드와 탄소섬유/탄소나노튜브를 이용한 복합재료의 특성)

  • Kim, Jeong Ho;Son, Kwonsang;Lee, Minho
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.14-19
    • /
    • 2014
  • Nanocomposites based on poly(methyl methacrylate) (PMMA)/poly(vinylidene fluoride) (PVDF) and poly(ethylene terephthalate) (PET)/(PVDF) blended with carbon fibers (CF) and carbon nanotube (CNT) were prepared by melt mixing in the twin screw extruder. Morphologies of the PMMA/PVDF/CF/CNT and PET/PVDF/CF/CNT nanocomposites were investigated using SEM. The aggregation of CNT was observed in PMMA/PVDF/CF/CNT nanocomposites while the good dispersion of CNT was shown in PET/PVDF/CF/CNT nanocomposites. In SEM image of PET/PVDF/CF/CNT nanocomposite, the CNT were mainly located at the PET domain of phase-separated PET/PVDF blend due to the ${\pi}-{\pi}$ interaction between the phenyl ring of PET and graphite sheet of the CNT's surface. In addition, a fairly good compatibility between PET/PVDF matrix and CF was shown in the SEM image. In the case of PET/PVDF nanocomposites blended with the co-addition of CF and CNT, the volume electrical resistivity decreased while no change was observed in PMMA/PVDF/CF/CNT composites. The degree of CNT dispersion in morphology results was consistent with the electrical conductivity results. From the DSC results, the crystallization temperature (Tc) of PET/PVDF/CF/CNT nanocomposites increased due to the co-addition of CF and CNTs acting as a nucleating agent. Flexural modulus of PET/PVDF/CF/CNT were sharply enhanced due to increasing the interaction between PET and CF.