• Title/Summary/Keyword: Crystallite size

Search Result 286, Processing Time 0.022 seconds

Synthesis and Comparative Analysis of Crystallite Size and Lattice Strain of Pb2Ba1.7Sr0.3Ca2Cu3O10+δ Superconductor

  • Hasan, Maher Abd Ali;Jasim, Kareem Ali;Miran, Hussein Ali Jan
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.66-71
    • /
    • 2022
  • In this article, Pb2Ba1.7Sr0.3Ca2Cu3O10+δ superconductor material was synthesized using conventional solid-state reaction method. X-ray diffraction (XRD) analysis demonstrated one dominant phase 2223 and some impurities in the product powder. The strongest peaks in the XRD pattern were successfully indexed assuming a pseudo-tetragonal cell with lattice constants of a = 3.732, b = 3.733 and c = 14.75 Å for a Pb-Based compound. The crystallite size and lattice strain between the layers of the studied compound were estimated using several methods, namely the Scherrer, Williamson-Hall (W.H), size-strain plot (SSP) and Halder Wagner (H.W) approach. The values of crystallite size, calculated by Scherrer, W.H, SSP and H.W methods, were 89.4540774, 86.658638, 87.7555823 and 85.470086 Å, respectively. Moreover, the lattice strain values obtained by W.H, SSP and H.W methods were 0.0063240, 0.006325 and 0.006, respectively. It was noted that all crystallite size results are consistent; however, the best method is the size-strain plot because it gave a value of R2 approaching one. Furthermore, degree of crystallites was calculated and found to be 59.003321%. Resistivity analysis suggests zero-resistance, which is typical of superconducting materials at critical temperature. Four-probe technique was utilized to measure the critical temperature at onset Tc(onset), zero resistivity Tc(off set), and transition (width ΔT), corresponding to temperatures of 128 K, 116 K, and 12 K, respectively.

Measurement of Crystallite Size of Method and Evaluation of Crystal Defects (X선 회절법에 의한 할로겐화 은 유제입자의 크리스탈라이트 크기 측정과 결정결함 평가에 관한 연구)

  • Bae, Chang-Hwan;Lee, Ju-Hee;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.330-336
    • /
    • 2009
  • The size of crystallites in mono-dispersed cubic silver bromide grains was measured by applying a powder X-ray diffraction method and Scherrer's equation to grains that were suspended in swollen gelatin layers. In order to evaluate the existence of defects, the measured crystallite size was compared to those measured by using a scanning electron microscope. In the case of the grains prepared by the controlled double jet method, the size of crystallites was equal to the edge length of the grains that had edge lengths smaller than 400 nm. This result proved the usefulness of the above-stated method for measuring the size of crystallites and also evaluating the presence of any crystal defect in each grain. In the case of the grains, which were precipitated in the presence of a sensitizing dye and potassium iodide, the size of crystallites was smaller than the edge's length, indicating the discontinuities in the grains introduced during the precipitation process.

The Characteristic of Agglomerate and Sintering of Y-PSZ Powders Prepared by Different Processes (제조방법에 따른 Y-PSZ 분말의 응집 및 소결특성)

  • Lee, Jong-Kook;Kim, Hwan;Hwang, Kyu-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.9-16
    • /
    • 1985
  • Agglomeration of Y-PSZ and its related properties were studied. The ultrafine $ZrO_2$ powder containg 3 mol% $Y_2O_3$ was prepared by 1) coprecipitation method b) hot petroleum drying method c) sol-gel method and the characteristics of calcined powders and the microstructures of sintered body were observed. Powder prepared by the coprecipitation method was about 125$\AA$ in crystallite size and 0.1~1.0${\mu}{\textrm}{m}$ of intra-agglomerate pore size when calcined at $600^{\circ}C$ for 1 hour. because of small crystallite size and weak agglo merate strength resultant densification of sintered body was high. But above the temperature of 130$0^{\circ}C$ efflorescent phenomena due to anions attached to powder surface was observed. Powder prepared by hot petroleum drying method was 65$\AA$ in crystallite size and 1~10${\mu}{\textrm}{m}$ of intraagglome-rate pore size and it was observed that the agglemerates were formed during the calcining process. In this case despite of small crystallite size the rate of sintering was slow and the existing lenticular interagglomerate pore was not eliminated to the final stage of sintering. Powder prepared by sol-gel method showed solid agglomertes due to rapi dhydrolysis reaction. In this powder which involves strong solid agglomerates overall sintering rate was determined by the sintering between the agglomerates and therefore sinterability of powders made by sol-gel method was very poor.

  • PDF

Crystal Structure of Tension Wood by X-ray Diffraction Method (X 선(線) 회절법(回折法)에 의한 Tension Wood의 결정구조(結晶構造) 해석)

  • Lee, Won-Yong;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.73-78
    • /
    • 1993
  • Crystal structure of tension, opposite and lateral wood of Platanus orientalis L. were analysed in some aspects of crystallinity index, crystallite size, d-spacing of (200) and (004), and integrated intensity ratios with X-ray diffraction method. Crystallinity index and crystallite width in tension wood appeared somewhat larger than opposite or lateral wood. However, d-spacing and integrated intensity ratios were nearly identical irrespective of tension, opposite, and lateral wood.

  • PDF

A Study of Crystallization and Fracture Toughness of Glass Ceramics in the $ZrO_2.SiO_2$ Systems Prepared by the Sol-Gel Method (졸-겔법으로 제조한 $ZrO_2.SiO_2$계 결정화유리의 결정화 및 파괴인성에 관한 연구)

  • 신대용;한상목;강위수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.50-56
    • /
    • 2000
  • Precursor gels with the composition of xZrO2·(100-x)SiO2 systems (x=10, 20 and 30 mol%) were prepared by the sol-gel method. Kinetic parameters, such as activation energy, Avrami's exponent, n, and dimensionality crystal growth value, m, have been simultaneously calculated from the DTA data using Kissinger and Matusita equations. The crystallite size dependence of tetragonal to monoclinic transformation of ZrO2 was investigated using XRD, in relation to the fracture toughness. The crystallization of tetragonal ZrO2 occurred through 3-dimensional diffusiion controlled growth(n=m=2) and the activation energy for crystallization was calculated using Kissinger and Matusita equations, as about 310∼325±10kJ/mol. The growth of t-ZrO2, in proportion to the cube of radius, increased with increasing heating temperature and hteat-treatment time. It was suggested that the diffusion of Zr4+ ions by Ostwald ripening was rate-limiting process for thegrowth of t-ZrO2 crystallite size. The fracture toughness of xZrO2·(100-x)SiO2 systems glass ceramics increased with increasing crystallite size of t-ZrO2. The fracture toughness of 30ZrO2·70SiO2 system glass ceramics heated at 1,100℃ for 5h was 4.84 MPam1/2 at a critical crystaliite size of 40 nm.

  • PDF

Size and Crystal Structure Dependence of Photochromism of Nanocrystalline WO3 and MoO3 Prepared by Acid-Precipitation Method

  • Jun Young, Kwak;Young Hee, Jung;Yeong Il, Kim
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • Nanocrystallne WO3 and MoO3 with several different sizes and crystal structures were prepared by simple acid precipitation and subsequent heat treatment. The photochromic (PC) properties of these samples were comparatively investigated in powder state by monitoring diffuse reflectance spectral changes after bandgap irradiation. The PC effect of hexagonal WO3 and monoclinic WO3 strongly depended upon crystallite size rather than crystal structure. The smaller the crystallite size, the better the PC effect. However, orthorhombic WO·H2O and MoO3 having hexagonal and orthorhombic structures did not follow this trend. One consistent result for all WO3 and MoO3 samples is that the heat treatment in air, which changes crystallinity, whether it changes the crystal structure or only the crystallite size, reduces the PC effect. Since the thermal treatment reduces the surface oxygen defect sites, we believe that the PC effect of WO3 and MoO3 depends critically on the surface oxygen defect sites that serve as deep trap sites for photogenerated electrons and oxygen radical holes. We also found that the proton insertion claimed by double charge injection model is not critical for the PC effect.

The Effect of Milling Time and Speed on the Particle Size of Ibuprofen in the Cryogenic Ball Milling Process (극저온 볼 밀링 공정시 밀링시간 및 속도가 Ibuprofen분말의 입자 크기에 미치는 영향)

  • Cho Hyun Kab;Paik Young Nam;Rhee Kyong Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.1022-1027
    • /
    • 2005
  • In this study, ball milling process was applied to reduce the particle size of bio-material down to submicron size. The material used was Ibuprofen. The ball milling was performed at low temperature of about $-180^{\circ}C$. The effect of processing conditions (milling time, milling speed) on the particle size was determined. The results showed that the degree of crystallite of Ibuprofen was slightly reduced by the ball milling process. The results also showed that the size of Ibuprofen was significantly reduced by the ball milling process. The effect of milling time was significant within the milling time of six hours while it was small thereafter.

Physico-mechanical, AC-conductivity and microstructural properties of FeCl3 doped HPMC polymer films

  • Prakash, Y.;Somashekarappa, H.;Manjunath, A.;Mahadevaiah, Mahadevaiah;Somashekar, R.
    • Advances in materials Research
    • /
    • v.2 no.1
    • /
    • pp.37-49
    • /
    • 2013
  • The transition metal salt doped solid polymer electrolyte [TSPE] were prepared with HPMC as a host polymer. The virgin and doped films were prepared by solution-casting method and investigated using wide angle X-ray scattering method. Micro structural parameters like lattice strain (g%), stacking/twin faults, the average number of unit cells counted in a direction perpendicular to the Bragg's plane (hkl) spacing of (hkl) planes dhkl, crystallite size Ds, distortion width, standard deviation were determined by whole pattern powder fitting (WPPF) method, which is an extension of single order method. It is found that the crystallite size decreases with the increase in the content of $FeCl_3$. This decrease is due to increase in localized breaking of polymer network which also accounts for the amorphous nature of the material. The filler inorganic salt $FeCl_3$ acts as plasticizer. FTIR study also confirms and justifies the interaction between the polymer and in-organic salt in the matrix. Physical properties like mechanical stability and Ac conductivity in these films are in conformity with the X-ray results.

The Change of Crystal Structure and Physical Properties of Partially Oriented Polyester Yarn(POY) on the Draw Ratio and Heat Setting Temperature (연신비와 열고정 온도에 따른 Partially Oriented Polyester Yarn(POY)의 구조변화와 물성)

  • 박명수;윤종호
    • Textile Coloration and Finishing
    • /
    • v.12 no.2
    • /
    • pp.103-110
    • /
    • 2000
  • To examine the physical properties of POY through the microstructure control, the crystal structure such as the crystallinity, the crystallite size, the orientation, the shrinkage, the tensile properties, and the thermal stress of POY(80/48, SD) were examined at different draw ratios and annealing temperatures. From the examination following conclusions were obtained : 1. The crystallinity was more effected by the heat setting temperature than by the draw ratio. The increasing rate was greatest at the heat setting temperature range of $170~190^\circ{C}$. 2. The crystallite size perpendicular to the fiber axis was more effected by the annealing temperature at lower draw ratios. On the other hand, the crystal and amorphous orientations were more effected by the heat setting at higher draw ratios. 3. The boiling shrinkage did not change significantly, but the total shrinkage showed 13% at the draw ratio 1.9 and the heat setting temperature $170^\circ{C}$. 4. The maximum thermal stress increased with increasing the draw ratio and decreasing the heat setting temperature in the temperature range of $170~210^\circ{C}$. At the draw ratio 1.9 and the heat setting temperature $170^\circ{C}$, the maximum thermal stress found was 1.1gf/d. 5. In the heat setting temperature above $170^\circ{C}$ after the drawing, the crystallinity, the crystallite size, the orientation, and the strength increased with increasing temperature, but the shrinkage and the maximum thermal stress decreased with increasing temperature.

  • PDF

A Study on the Change of fine Structure of Hemp Cellulose (안동포원료 Hemp Cellulose의 미세구조에 관한 연구)

  • Lee UK Ja;Ryu Duck Whan
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.8 no.1
    • /
    • pp.29-37
    • /
    • 1984
  • This study was investigation of the change of fine structure of hemp cellulose at different growing stages. The samples collected about every eight day were divided into seven groups based on plants height, then they were numbered from 1 to 7 in the order of their height. For this, the degree of crystallinity, orientation and crystallite size were measured by wide angle X-ray diffraction method. The results of this experiment were summerized as follows ; 1) The degree of crystallinity was increased by growth of hemp celtilose to be maximum in sample 5$\~$6. At this stage, the stability of crystals was showed in good states. In addition to, crystallinity index by Segal, Turley and area method showed same tendency as Ruland's. 2) The change of orientation was gradually increased by growth of hemp cellulose. This result was correlated with the degree of crystallinity. Therefore, the change of orientation depend on the degree of crystallinity. 3) On the other hand, the crystallite size was decreased by growth of hemp cellulose. But, increased after sample 4. By the way, crystallite size was interrelated with growth rate.

  • PDF