• 제목/요약/키워드: Crystalline Solar cell

검색결과 388건 처리시간 0.032초

도핑 공정에서의 Pre-deposition 온도 최적화를 이용한 Solar Cell 효율 개선 (Solar Cell Efficiency Improvement using a Pre-deposition Temperature Optimization in The Solar Cell Doping Process)

  • 최성진;유진수;유권종;한규민;권준영;이희덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.244-244
    • /
    • 2010
  • Doping process of crystalline silicon solar cell process is very important which is as influential on efficiency of solar. Doping process consists of pre -deposition and diffusion. Each of these processes is important in the process temperature and process time. Through these process conditions variable, p-n junction depth can be controled to low and high. In this paper, we studied a optimized doping pre-deposition temperature for high solar cell efficiency. Using a $200{\mu}m$ thickness multi-crystalline silicon wafer, fixed conditions are texture condition, sheet resistance($50\;{\Omega}/sq$), ARC thickness(80nm), metal formation condition and edge isolation condition. The three variable conditions of pre-deposition temperature are $790^{\circ}C$, $805^{\circ}C$ and $820^{\circ}C$. In the $790^{\circ}C$ pre-deposition temperature, we achieved a best solar cell efficiency of 16.2%. Through this experiment result, we find a high efficiency condition in a low pre-deposition temperature than the high pre-deposition temperature. We optimized a pre-deposition temperature for high solar cell efficiency.

  • PDF

다결정 태양 전지 효율 향상 위한 Laser 표면 texturing (Laser texturing on the surface for improvement of multi-crystalline solar cells)

  • 김태훈;김선용;고지수;박현호;김광열;조창현;신성욱;최병덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.364-364
    • /
    • 2009
  • The solar cell is in the spotlight as a future green energy source. In the solar cells based on silicon wafer, the improvement of efficiency is one of crucial issues. One of techniques for high efficiency is texturing on the surface of solar cells. We studied the laser texturing on the surface of multi-crystalline silicon solar cells. The laser texturing followed by chemical etching is adequate for the multi-crystalline structure which have random crystallographic directions. We used the fiber laser for texturing and the SiNx as a masking layer for etching process. We investigated the shapes of holes for texturing in the various laser power conditions and analyzed the holes after removal of thermal damages caused by laser ablation through a 3D profiler.

  • PDF

$Al_2O_3/SiN_x$ 후면 적층 패시베이션을 이용한 결정질 실리콘 태양전지의 효율 향상 연구 (Efficiency Improvement with $Al_2O_3/SiN_x$ Rear Passivation of p-type Mono-crystalline Silicon Solar Cells)

  • 천주용;백신혜;김인섭;천희곤
    • 반도체디스플레이기술학회지
    • /
    • 제12권3호
    • /
    • pp.47-51
    • /
    • 2013
  • Current research trends of solar cells has focused on the high conversion efficiency and low-cost production technology. Passivation technology that can be easily adapted to mass production. Therefore, this study conducted experiments with aim of the following two methods for the fabrication of high-efficiency crystalline silicon solar cells. In the first task, an attempt is formation of local Al-BSF to a number of locally doped dots to increase the conversion efficiency of solar cells to reduce the loss of $V_{oc}$ overcome. The second major task, rear surface apply in $Al_2O_3/SiN_x$ stack layer, $Al_2O_3$ prominent negative fixed charge characteristics. As the result of task, Local Al-BSF and $Al_2O_3/SiN_x$ stack layer applied to the p-type single crystalline silicon solar cells, the average $V_{oc}$ of 644mV, $I_{sc}$ of 918mV and conversion efficiency of 18.70% were obtained.

다공성 실리콘 막을 적용한 결정질 실리콘 태양전지 특성 연구 (Investigation of the crystalline silicon solar cells with porous silicon layer)

  • 이은주;이일형;이수홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.295-298
    • /
    • 2007
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

  • PDF

단결정 실리콘 태양전지를 위한 screen printing 전극과 photo lithography 다층전극의 적용에 대한 연구 (Application of Screen Printing and Photo Lithography Multi-layer Metal Contact for Single Crystalline Silicon Solar Cells)

  • 김도완;최준영;이은주;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.109-109
    • /
    • 2006
  • Screen printing (SP) metal contact is typically applied to the solar cells for mass production. However, SP metal contact has low aspect ratio, low accuracy, hard control of the substrate penetration and unclean process. On the other hand, photo lithograpy (PL) metal contact can reduce defects by metal contact. In this investigation, PL metal contact was obtained the multi-layer structure of Ti/Pd/Ag by e-beam process. We applied SP metal contact and PL metal contact to single crystalline silicon solar cells, and demonstrated the difference of conversion efficiency. Because PL metal contact silicon solar cell has Jsc (short circuit current density) better than silicon solar cell applied SP metal contact.

  • PDF

Radio Frequency Multi-Hollow Cathode 플라즈마 시스템을 이용한 대면적 블랙 실리콘 태양전지에 관한 연구 (A Study on Large Area Black Silicon Solar Cell Using Radio-Frequency Multi-Hollow cathode Plasma System)

  • 유진수;임동건;양계준;이준신
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권11호
    • /
    • pp.496-500
    • /
    • 2003
  • A low-cost, large area, random, maskless texturing scheme independent of crystal orientation is expected to significantly impact terrestrial photovoltaic technology. We investigated silicon surface microstructures formed by reactive ion etching (RIE) in Multi-Hollow cathode system. Desirable texturing effect has been achieved when radio-frequency (rf) power of about 20 Watt per one hollow cathode glow is applied for our RF Multi-Hollow cathode system. The black silicon etched surface shows almost zero reflectance in the visible region as well as in near IR region. The etched silicon surface is covered by columnar microstructures with diameters from 50 to 100 nm and depth of about 500 nm. We have successfully achieved 11.7% efficiency of mono-crystalline silicon solar cell and 10.2% multi-crystalline silicon solar cell.

Fiber Laser를 이용한 다결정 태양전지 Surface Texturing

  • 김태훈;김선용;고지수;박홍진;김광열;최병덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.270-270
    • /
    • 2009
  • The surface texturing technology is one of the methods to improve the efficiency of crystalline silicon solar cell. This process reduced the reflectance at the surface by the so-called double bounce effect and increased the light trapping. Among these surface texturing technology, the laser texturing is effective for multi-crystalline silicon solar cells which have random crystallographic directions. We investigated the characteristics of laser processing on the surface of the multi-crystalline silicon solar cells using the fiber laser.

  • PDF

Polymer Tandem Solar Cell Having $TiO_2$ Nanoparticle Interlayer

  • Chung, Won-Suk;Lee, Hyun-Jung;Lee, Won-Mok;Ko, Min-Jae;Park, Nam-Gyu;Ju, Byeong-Kwon;Kim, Kyung-Kon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1200-1203
    • /
    • 2009
  • A solution processed polymer tandem cell has been fabricated by using the organic layer coated crystalline $TiO_2$ nanoparticle inter layer. The highly dispersive OL-$TiO_2$ has several advantages in terms of excellent film forming property, crystallinity, optical transparency, and well defined chemical composition. The surface morphology of the $TiO_2$ thin film was found to play a crucial role in the performance of the polymer tandem cell. The stability of the tandem cell, utilizing dense $TiO_2$ nanoparticles inter layer, was superior to the stability of the single junction cell.

  • PDF

고효율 태양전지모듈의 성능측정 방법 (Performance Measurement Method of Several Types of Photovoltaic Module Depending on Efficiency)

  • 김경수;강기환;유권종;윤순길
    • 한국태양에너지학회 논문집
    • /
    • 제31권1호
    • /
    • pp.93-99
    • /
    • 2011
  • To guarantee more exact maximum power of solar cell module, it is absolutely required to have performance characteristics of various solar cells. Today, there are many types of solar simulator for large area measurement. But it is very opaque how to select the best one for various solar cell module like crystalline silicon solar cell, high efficiency solar cell, amorphous silicon thin film solar cell, CdTe and CIGS solar cell module. So, in this paper 4 types of photovoltaic module were selected to compare the electrical characteristics by changing light pulse duration time and voltage scan direction. Light pulse duration time was varied from 10msec to 800msec. And two types of voltage scan directions, Voc->Isc and Isc->Voc were selected. From this results, optimum measuring condition was suggested and electrical variation was analysed for each types of solar cell module. The detail description is specified as the following paper.