• Title/Summary/Keyword: Crystalline Phase

Search Result 1,180, Processing Time 0.023 seconds

The Flow Properties and Stability of O/W Emulsion Composed of Various Mixed Nonionic Surfactants(II) The Phase Behavior and Flow Properties of O/W Emulsion According to the Addition of the Long Chain Alcohols (혼합 비이온계면활성제의 조성에 따른 O/W 에멀젼의 유동특성 및 안정성(II) 고급 알코올의 첨가에 따른 O/W 에멀젼의 상거동 및 유동특성)

  • Lee, Ho-Sik;Kim, Jum-Sik
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.423-431
    • /
    • 1993
  • Long chain alcohols, the mixtures of 1-hexadecanol/1-octadecanol, were used as cosurfactants for O/W emulsion prepared with glycerol monostearate/POE(100) monostearate mixed nonionic surfactants, and the phase behavior and flow properties of O/W emulsions were observed. The transition temperature of long chain alcohol was varied with the composition of 1-hexadecanol/1-octadecanol and had the lowest value when the mixed ratio of 1-hexadecanol/1-octadecanol was 2/1. The liquid crystalline phase was formed as the addition of long chain alcohol and the secondry droplet, the flocculate of the emulsion particles, was made, and thus the viscosity of the emulsion was increased. When the temperature of emulsion system was under the transition temperature of long chain alcohol, the mobility of hydrocarbon group of long chain alcohol was restricted, and thus gel structure was formed and the viscosity of the the O/W emulsion was increased, but along with the time, the liquid crystalline phase was disappeared and the viscosity of emulsion was decreased. Long chain alcohol/nonionic surfactants/water formed the liquid crystalline phase when the long chain alcohol was added above the saturation point of solution(2 wt% in this experoment), and the secondry droplet didn't formed when the long chain alcohol was added more than a certain amount (10 wt% in this experiment).

  • PDF

Thermotropic Liquid Crystalline Properties of α,ω-Bis(4-cyanoazobenzene-4'-oxy)alkanes (α,ω-비스(4-사이아노아조벤젠-4'-옥시)알케인들의 열방성 액정 특성)

  • Jeong, Seung Yong;Kim, Hyo Gap;Ma, Yung Dae
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.358-366
    • /
    • 2011
  • A homologous series of linear liquid crystal dimers, the ${\alpha},{\omega}$-bis(4-cyano-azobenzene-4'-oxy)alkanes (CATWETn, where n, the number of methylene units in the spacer, is 2~10) were synthesized, and their thermotropic liquid crystalline phase behavior were investigated. The CATWETn with n of 3 and 6 exhibited monotropic nematic phases, whereas other derivatives showed enantiotropic nematic phases. The nematic-isotropic transition temperatures of the dimers and their entropy variation at the phase transition showed a large odd-even effect as a function of n. This phase transition behavior was rationalized in terms of the change in the average shape of the spacer on varying the parity of the spacer. The thermal stability and degree of order in the nematic phase and the magnitude of the odd-even effect of CATWETn were similar to those for the methoxy-, nitro-, and pentyl-substituted dimers, while they were significantly different from those for the monomesogenic compounds, 1-{4-(4'-cyanophenylazo)phenoxy}alkylbromides and the side-chain liquid-crystalline polymers, the poly[1-{4-(4'-cyanophenylazo)phenoxyalkyloxy}ethylene]s. The results were discussed in terms of 'virtual trimer model' by Imrie.

Selective Wet-Etching Properties of GeSbTe Phase-Change Films (GeSbTe 상변화 박막의 선택적 에칭 특성)

  • Kim, Jin-Hong;Lim, Jung-Shik;Lee, Jun-Seok
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.3
    • /
    • pp.118-122
    • /
    • 2007
  • Phase-change wet-etching technology using GeSbTe phase-change films is developed. Selective etching between an amorphous and a crystalline phase can be carried out with an alkaline etchant of NaOH. Etching selectivity is dependent not only on the concentration of the alkaline etchant but also on the film structure. Specifically, metal films for heat control cause marked effects on the etching properties of GeSbTe film. Surviving amorphous pits can be obtained with Al metal layer, however etched amorphous pits are seen with Ag metal layer. An opposite selective etching behavior can be observed between samples with two different metal layers.

  • PDF

Structural Phase Transformations in Semiconductor Material Induced by Nanoindentation (나노압입에 의한 반도체 소재의 구조상전이 해석)

  • Kim, D.E.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.77-80
    • /
    • 2006
  • Structural phase transformations of silicon during nanoindentation were investigated in detail at the atomic level. The molecular dynamics simulations of nanoindentation on the (100), (110) and (111) surface of single crystalline silicon were simulated, and this supported the theoretical prediction of the anisotropic behavior of structural phase transformations. Simulations showed that microscopic aspects of phase transformation varied according to the crystallographic orientation of the contact surface and were directly linked to the slip system.

  • PDF

Effect of Silica Addition on Phase Transformation Characteristics of Heat-Treated Combustion-Synthesized TiO2 Nanoparticles (실리카가 첨가된 연소합성 TiO2 나노입자의 열처리에 따른 상변환 특성)

  • Kim, Min-Su;Lee, Gyo-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.186-193
    • /
    • 2009
  • In this article, the effect of silica addition on the phase transformation characteristics of $TiO_2$ nanoparticles synthesized by using an $O_2$-enriched coflow, hydrogen, diffusion flame was investigated. TTIP(titanium tetra-isopropoxide) and TEOS(tetraethyl-orthosilicate) were used as precursors for $TiO_2$ and $SiO_2$ nanoparticles, respectively. Based on the results from TEM and XRD analysis, it is believed that the silica addition on the flame synthesis of $TiO_2$ nanoparticles reduces the particle size distribution and raises the temperature of the phase transition from anatase to rutile. But the reduced sizes of the synthesized particles due to the silica addition made the sintering and phase transformation of particles more easily.

Fabrication of Plasma Resistant Y2O3-Al2O3-SiO2 Coating Ceramics by Melt-Coating Method (용융코팅법에 의한 내플라즈마성 Y2O3-Al2O3-SiO2계 코팅 세라믹스 제조)

  • Park, Eui Keun;Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.359-368
    • /
    • 2020
  • This study is aimed at improving the plasma resistance of Al2O3 ceramics on which plasma resistant YAS(Y2O3-Al2O3-SiO2) frit is melt-coated using a simple heat-treatment process. For this purpose, the results of phase analysis and microstructural observations of the prepared YAS frits and the coating layers on the Al2O3 ceramics according to the batch compositions are compared and discussed with regard to the results of plasma resistance test. The prepared YAS frits consist of crystalline or amorphous or co-existing crystalline and amorphous phases according to the batch compositions, depending on the role and content of each raw material. The prepared YAS frit is melt-coated on the densely sintered Al2O3 ceramics, resulting in a dense coating layer with a thickness of at least ~ 80 ㎛. The YAS coating layer consists of crystalline YAG(Y3Al5O12), Y2Si2O7, and Al2O3 phases, and YAS glass phase. Plasma resistance of YAS coated Al2O3 ceramics is strongly dependent on the content of the YAG(Y3Al5O12) and Y2Si2O7 crystalline phases in the coating layer, especially on the content of the YAG phase. Comparing the weight loss of YAS coating ceramics with values obtained for commercial Y2O3, Al2O3, and quartz ceramics, the plasma resistance of the YAS coating ceramics is 6 times higher than that of quartz, 2 times higher than that of Al2O3, and 50 % of the resistance of Y2O3.

Effects of Edge Activator on the Droplet Size and Skin Permeation of Hydrated Liquid Crystalline Vesicles (Edge Activator가 수화 액정형 베시클의 입자크기와 피부 침투에 미치는 영향)

  • Lee, Seo Young;Lim, Yoon Mi;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.679-684
    • /
    • 2017
  • Hydrated liquid crystalline vesicles incorporating a edge activator, which confers flexibility to the vesicle membranes, were prepared and niacinamide was encapsulated in them. The formation of liquid crystalline phases and their thermal phase transitions were investigated by polarized optical microscopy and differential scanning calorimetry (DSC), respectively. Droplet sizes of the vesicles were reduced to several tens of nanometers by incorporating edge activators, such as sodium deoxycholate, lysolecithin, or polysorbate 80. The amount of niacinamide permeated into a pig skin increased greatly using the hydrated liquid crystalline vesicles compared to the case where niacinamide was applied in an aqueous solution state. The vesicles incorporating 10% sodium deoxycholate increased the amount of niacinamide permeated nearly four times. These results suggest that edge activators are effective in improving the skin permeability of vesicles.

Synthesis and Characterization of SnO2 Nanoparticles by Hydrothermal Processing

  • Kim, Ho-Jung;Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.415-418
    • /
    • 2011
  • Tin (IV) dioxide ($SnO_2$) has attracted much attention due to its potential scientific significance and technological applications. $SnO_2$ nanoparticles were prepared under low temperature and pressure conditions via precipitation from a 0.1 M $SnCl_4{\cdot}5H_2O$ solution by slowly adding $NH_4OH$ while rapidly stirring the solution. $SnO_2$ nanoparticles were obtained from the reaction in the temperature range from 130 to $250^{\circ}C$ during 6 h. The microstructure and phase of the synthesized tin oxide particles were studied using XRD and TEM analyses. The average crystalline sizes of the synthesized $SnO_2$ particles were from 5 to 20 nm and they had a narrow distribution. The average crystalline size of the synthesized particles increased as the reaction temperature increased. The crystalline size of the synthesized tin oxide particles decreased with increases in the pH value. The X-ray analysis showed that the synthesized particles were crystalline, and the SAED patterns also indicate that the synthesized $SnO_2$ nanoparticles were crystalline. Furthermore, the morphology of the synthesized $SnO_2$ nanoparticles was as a function of the reaction temperature. The effects of the synthesis parameters, such as the pH condition and reaction temperature, are also discussed.