• Title/Summary/Keyword: Crystal field

Search Result 1,132, Processing Time 0.029 seconds

The Study of Growth and Characterization of CuGaSe$_2$ Sing1e Crystal Thin Films for solar cell by Hot Wall Epitaxy (HWE(Hot Wall Epitaxy)에 의한 태양 전지용 박막성장과 특성에 관한 연구)

  • 홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.237-242
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the CuGaSe$_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CuGaSe$_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 610$^{\circ}C$ and 450$^{\circ}C$, respectively The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuGaSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting Δ So and the crystal field splitting ΔCr were 91 meV and 249.8 meV at 20 K, respectively. From the Photoluminescence measurement on CuGaSe$_2$ single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (D$^{\circ}$,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy 7f neutral acceptor bound excision were 8 meV and 35.2 meV, respectivity. By Haynes rule, an activation energy of impurity was 355.2 meV

  • PDF

Characteristic of Hyperfine Magnesioferrite Particles Possessing Shape Anisotropy

  • Going Yim;Chai Suck Yim
    • The Journal of Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.99-103
    • /
    • 2005
  • The ferrimagnetic resonance technique, with the inclusion of shaper anisotropy effects, was used to obtain information about the early stages in the precipitation of magnesium ferrite from iron-doped magnesia. The very small magnesioferrite particles were produced by precipitation method from solid solution of iron ion in single crystal magnesia. The temperature dependence of the resonance anisotropy field for a coherent assembly of hyperfine magnesium ferrite precipitates was investigated in the range 100~400K. The results are interpreted in terms of the shape anisotropy of the precipitates.

  • PDF

Photocurrent study on the splitting of the valence band and growth of $Cdln_2Te_4$ single crystal by Bridgman method (Bridgman법에 의한 $Cdln_2Te_4$단결정의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • 홍광준;이관교;이봉주;박진성;신동찬
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.132-138
    • /
    • 2003
  • A stoichiometric mixture for $CdIn_2Te_4$ single crystal was prepared from horizontal electric furnace. The $CdIn_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The $CdIn_2Te_4$ single crystal was evaluated to be tetragonal by the power method. The (001) growth plane of oriented $CdIn_2Te_4$ single crystal was confirmed from back-reflection Laue patterns. The carrier density and mobility of $CdIn_2Te_4$ single crystal measured with Hall effect by van der Pauw method are $8.61\times 1016 \textrm {cm}^{-3}$ and 242 $\textrm{cm}^2$/V.s at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2Te_4$ single crystal obtained from the absorption spectra was well described by the Varshni's relation, $1.4750ev - (7.69\times10^{-3})\; ev/k)\;T^2$/(T + 2147k).The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2Te_4$ single crystal have been estimated to be 0.2704 eV and 0.1465 eV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\Delta$so definitely exists in the $\Gamma_7$ states of the valence band of the $CdIn_2Te_4$ single crystal. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1-} B_{1-}$ and Cl-exciton peaks for n = 1.

Effects of natural convection on the melt/solid interface shape in the HEM process (열교환법 공정에서 고/액 계면의 형태에 미치는 자연대류의 영향)

  • 왕종회;김도현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.41-46
    • /
    • 1997
  • The change of flow field and the effects of convective heat transfer on the shape and location of melt/crystal interface has been studied during the crystal growth by the heat exchanger method. Although the thermal structure is stable in the crucible, the flow due to the natural convection driven by radial temperature gradient is significant, because the thermal stability is broken by the hemispherical melt/crystal interface shape. The maximum interface deflection with convection is smaller than without and the convective heat transfer should be considered to simulate the heat transfer process of heat exchanger method rigorously.

  • PDF

Electro-optic Behavior of Photonic Crystals with Nematic Liquid-Crystal (액정을 이용한 광자결정의 형성과 전기광학 효과)

  • Kwon, Jang-Un;Han, Soon-Ku;Kang, Dae-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1933-1935
    • /
    • 2002
  • In this paper, we present a study of the structure and electro-optic behavior of hybrid liquid-crystal-silica sphere composite photonic crystals, formed by filling the (26% by volume) void space of fee (face centered cubic) silica opals infiltrated with a nematic liquid crystal. Three dimensional photonic crystals of visible range were fabricated via a self assembly method of silica spheres of submicron diameter. The expected fee structure was confirmed by scanning electron microscopy (SEM) of the dehydrated crystal with glass removed. The photonic crystal exhibited significant electric-field-induced shift of the optical Bragg reflection peak when the liquid crystal has the long molecular axis oriented parallel to the sphere surfaces.

  • PDF

Technological Trend of Crystallization Research for Bioproduct Separation (Bioproduct 분리를 위한 결정화 연구 동향)

  • Kim, Woo-Sik;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.164-176
    • /
    • 2005
  • In bioengineering field, current academic trends and informations on crystallization technology for bioproduct separation were summarized. It is essential for utilizing the crystallization technology to understand the fundamental phenomena of crystallization of crystal nucleation, crystal growth, crystal agglomeration and population balance for the design of crystallizers. In general, the crystal nucleation that the crystalline solids occur from the solution is analyzed by Gibb's free energy change in the aspect of thermodynamics and in the present paper the crystal nucleation models based on the above thermodynamics are summarized by their key characteristics. The crystal growth and agglomeration, which have been studied over 50 years and are essential phenomena for separation technology, are reviewed from their basic concept to most leading edge trend of researches. In the material and population balances for the designs of crystallization separation process, the analysis of crystallizers is summarized. Thereon, the present review paper will academically contribute the understanding the crystallization phenomena and the design of the crystallization separation process.

Electrical Breakdown Properties of Extrusion Blended Low Density Polyethylene (사출 블렌드 저밀도 폴리에틸렌의 절연파괴 특성)

  • 조돈찬;김형주;신현택;이충호;이수원;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.593-596
    • /
    • 2001
  • In the previous work, the effect of blending with two kinds of low density polyethylene (LDPE) on physical and electrical properties have been investigated. From the results, blending with two kinds of LDPE was effective method on changing the morphology of LDPE and improving the high-field characteristics in high temperature region. Especially, it suggested that the F$\_$BImp/ was associated with the changes of the crystal size. In this work, the relationship between the morphology and the high-field characteristics of blended LDPE was discussed. In addition, the physical and electrical properties of blended LDPE with extrusion treatment were investigated. The two groups of specimen were prepared; Group 1 was prepared by passing 1 time through the extruder included in the film-blowing process, and Group 2 was prepared by passing 2 times through the extruder. From the relation between the crystal size which was perpendicular to the (020) plane and the F$\_$BImp/ of blended LDPE, it was confirmed that the F$\_$BImp/ was associated with the changes of crystal size due to the blending. Moreover, the F$\_$BImp/ of blended LDPE in Group 2 was higher than that of blended LDPE in Group 1. The crystal size of the (020) plane became smaller according to the extrusion treatment. These results suggest that the uniform distribution and dispersion of crystalline occurred due to the extrusion treatment and the morphological change due to the extrusion treatment influenced on the electrical properties of blended LDPE.

  • PDF

Growth and optical conductivity properties for BaIn2S4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 BaIn2S4 단결정 박막 성장과 광전도 특성)

  • Jeong, Kyunga;Hong, Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.173-181
    • /
    • 2015
  • A stoichiometric mixture of evaporating materials for $BaIn_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaIn_2S_4$ single crystal thin films measured from Hall effect by van der Pauw method are $6.13{\times}10^{17}cm^{-3}$ and $222cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.0581eV-(3.9511{\times}10^{-3}eV/K)T^2/(T+536K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaIn_2S_4$ have been estimated to be 182.7 meV and 42.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaIn_2S_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{24}$-exciton peaks for n = 24.

Melt-solid interface and segregation in horizontal bridgman growth using 2 - and 3 - dimensional pseudo - steady - state model (2차원 및 3차원 정상상태 모델에 의한 수평브릿지만 결정성장에서의 고 - 액 계면과 편석)

  • 민병수;김도현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.306-317
    • /
    • 1995
  • Abstract Gallium arsenide crystal is usually grown from the melt by the horizontal Bridgman method. We constructed pseudo - steady - state model for crystal growth of GaAs which inclue melt, crystal and the free interface. Mathematical equations of the model were solved for flow, temperature, and concentration field in the melt and temperature field in the crystal. The location and shape of the interface were also solved simultaneously. In 2 - dimensional model, the shape of the interface is flat with adiabatic thermal boundary condition, but it becomes curved with completely conducting thermal boundary condition. In 3 - dimensional model, the interface is less curved than 2 - dimensional case and the flow intensity is similar to that of 2 - dimensional case. With the increase of flow intensity vertical segregation shows maximum value in both 2 - and 3 - D model. However, the maximum value occurs in lower flow intensity in 2 - D model because the interface is more curved for the same flow intensity.

  • PDF