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要 約. Integral Hellmann-Feynman Theorem을 degenerate case에 연장 전개하였다. 연장된 

formula의 특성을 조사하고 근사식을 제안하였다. Conventional crystal field theory에 대한 고차섭동 

에너지 보정의 가능성을 논의 하였다.

Abstract. Integral Hellmann-Feynman Theorem is extended to degenerate case. The character­
istics of the extended formula are studied and an approximation is sug용ested. The possibility of 
higher order perturbation energy correction to the conventional crystal field theory is discussed.

Introduction

When zeroth state is perturbed, approximate 
energies and wave functions of the Schrodinger 
equation are usually obtained by means of the 
variation principle or perturbation theory. In 
many problems, the variational treatment is a 
•convenient way of calculating energy values, 
but it lacks the linear relationship between the 
-approximate nature of the wave functions and 
the exactness of the energy values. Hence, even 
though the wave functions are close to reality, 
-the variational energies obtained thereby cannot 
be expected to be as good. On the contrary, 
the perturbation treatment gives energies which 
are accurate to the order of the corresponding 
wave functions. But, the problem is that to 
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obtain a hi응her order wave functions we must 
solve severely complicated differential equations. 
It is known that accurate solutions of the first 
order perturbation equations are hard to obtain.

Parr1 previously suggested a perturbation 
energy formula, whose reliability is linearly 
related to that o£ the wave functions used, in 
the name of Integral Hellmann-Feynman The­
orem. Though the applicability of the theorem 
is restricted to the case where the zeroth state 
is nondegenerate, it has been successfully app­
lied to several problems.2,3

It is the purpose of this work to extend the 
theorem to degenerate case and to elucidate the 
characteristics of the extended formula. It will 
be shown that the formula enables the inclus­
ion of higher order perturbation energies.

The conventional crystal field theory looked 
upon as a perturbation energy problem will be 
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briefly reviewed. It will be noticed that the 
conventional crystal field theory, which has 
been successful in explaining optical spectra by 
means of parametrization, fails to give an acc­
eptable value of the crystal field splitting par­
ameter 10Dq when calculated from first princi­
ples. The possibility of overcoming this appa­
rent dilemma by way of an Integral Hellmann- 
Feynman. approach will be discussed.

Extension of the Integral Hellmann- 
Feynman Theorem to Degenerate Case

The Hamiltonian operator with and without 
perturbation is written as H and H° respectiv­
ely. The Schrodinger equation is

〈4시 由,=而 (1)

H(pk=Ek(/)ki〈如 13 =dkt (2)

for the zeroth and the perturbed state respect­
ively. The perturbation is defined as

(3)

and it is implied that 少ElE辭 as AH 
—+0. When the zeroth state is degenerate, we 
have

E1°=E2> = -^=Es°i g=degeneracy (4)

In matrix form, eq. (2)is written as

HC^CE (5)

where

旦三｛0|H|奶〉｝ )
C三｛GJ，C将三성qQ [

玉三仿以瓦｝ J
Taking
스戶 ｛〈W，Hgj〉｝ )
也三｛M/EJ, AEk=Ek-Ek° (7)
声M ｛房百。｝ J

eq. (5) may be rewritten as

E°C+JHC=CJE+CE° (8)

Now, within the degenerate space mentioned 
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above, 

and

（罗£爲=（，E°爲

(9)

(고 0)

Thus, eq. (8) is arranged to give the Integral 
Hellmann-Feynman formula for the degenerate 
case,

(四C)『C囱& Q, l<g) (11)

which, in integral form, is

〈山 I 山키 饥) =〈如 I 饥〉厶E【(k, Z<g) (12)

For k=lt eq, (12) becomes

饥〉=〈<力I饥〉』但 (13)

which is formally the same as that for nonde­
generate case. But, the difference is that for 
degenerate case eq. (12) must be satisfied for 
off-diagonal elements.

Now, let us compare the magnitude of diago­
nal elements with that of off-diagonal elements, 
Combining eqs. (12) and (13), we have

〈而H\妩〉_〈见|饥〉
(& l<g) (14)

(사브C)비_= c地(% zv) 匕⑸
(씌理 H Cu ~g) W

If g is expanded in the perturbation series

⑴ + 02)+g ⑶ + …… (16)

we obtain

⑴*+c ⑴)-r (C ⑴ 0Q)+C ⑵*+C(2))
+(C&⑵ +CC⑴+ g'+C<3>) + …(17) 

where C+ is the associate matrix of C. Without 
loss of generality, we may assume

C=C* (18)

Therefore, from eb. (17), we obtain
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C?： + C：；=O (19)

pC：GV+C；?+C；?=O (20)

ec.-'c;：1+习隽隽+c;r+cr=o (21)> i
It immediately follows that

GW (22)

席=0 (23)

以=一*切(席)2<0 (24)

Since the sum appeari g in eq. (24) is an infi­
nite one, it may be said that

I (25)

Combining eqs. (15), (16), (23) and(24), 
we have the following, for the ratio of off-dia­
gonal element to diagonal element,

o*'二〈如|/可饥〉—〈如|。/>
"〈山|眾第姦〈饥、&〉

- 笠心+……
_ i+cy+c；?+-……

三i龙布 成 妇级) (26)

Recalling eq. (25) we have, from eq. (26),

\R\\\<\Cr：\ 。，匸g,奸7) (27)

The implication of eq. (27) is rather important. 
That is, the。任서iagonal elements of the matr­
ices ｛〈如］zLH| 由〉｝ and ｛〈由」由〉｝ are smaller 
than second order assuming the diagonal elem­
ents as zeroth order. In。바)er words, if thes 
and 0's are reasonably good wave functions, 
then

〈由 0〉=O &그으Z) (28)

must be satisfied.
Now, eq. (13) which is our master integral 

formula deserves several comments. Firstly, the 
AEt given by eq. (13) is exactly equal to the 
difference of the expectation values, 시爪H\妬) 

一〈由 I I 由〉，only if 由and 饥 are exact solu­

tions of eqs. (1) and (2) respectively. That 
is, the 厶Ei of eq. (13) is the sum of the per­
turbation energies of all orders. Secondly, 
when <5/ is approximated by 仲그饥, where the 
由 itself is the exact solution of eq. (1), both 

of eq. (13) and the difference of the exp­
ectation values give the first order perturbation 
energy. In general, if the 饥 is exact to the 
n-th order, the exactness of JEZ of eq. (13) 
is guaranteed to the (n+1) —th order. For ex­
ample, if the 0/ is correct to the first order, 
4& of eq. (13) gives the perturbation energy 
which is exact to the second orer. Although, 
according to the perturbation theory, it is pos­
sible to obtain the perturbation energy correct 
to the third order when the first order perturbed 
function is available, in practice it is very 
rarely the case that one knows the exact first 
order perturbed function, especially in the de* 
generate case. Therefore, the linear relationship 
between the exactness of the 0/ and that of 
AEi is quite useful when an approximation is 
made. Lastly, the of eq. (13) is a very- 
convenient form for symmetry consideration. 
Together with the relation given by eq. (28), 
it does help guessing the symmetry components 
of(pi when extensive degeneracy exists in the 
zeroth state. When AH belongs to the totally 
symmetric representation of a point group, 饥 

must belong to the same irreducible representa­
tion as饥.

Discussion

A Comment on Crystal Field Theory
Crystal field theory can be looked upon as a 

problem of calculating perturbation energies 
which arise when more than two perturbations 
are applied to a highly degenerate zeroth state. 
In the simplest case, only electron-electron re­
pulsion and crystal field potential are considered 
as perturbations. When the electron-electron 
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rep ulsion plays the more significant role than 
the crystal field potential, the secular matrix 
is reduced by classifying the degenerate zero 
order functions according to the eigenfunctions 
of angular momentum operators which commute 
with l/ri2 (weak field method). When the cry­
stal field potential is greater than the electron­
electron repulsion, the secular matrix is reduced 
by taking linear combinations of the zero or­
der functions to give basis functions of the 
irreducible representation of the symmetry group 
to which the complex molecule belongs (strong 
field method). But the problem is that, in both 
methods, nonvanishin홍 off-diagonal matrix ele­
ments remain. Orgel4 was the first to show di- 
agrammatically the effect of interaction between 
spectroscopic terms on the energy values as the 
crystal field strength gradually increases from 
zero. Liehr and Ballhausen5 numerically evalu­
ated the interaction between spectroscopic terms 
in both the weak field and the strong field pic­
tures. All of them looked upon each spectrosc­
opic term as a degenerate space and employed 
configuration interaction to handle the nonzero 
off-diagonal elements. However, the apparent 
higher order energy correction, which is made 
by considering configuration interaction in the 
picture of Orgel and Ballhausen, is nothing 
more than the first order correction if electron­
electron repulsion (e. e. r.) plus crystal field 
potential (c. f. p.) is treated as a single pertur­
bation. Namely, defining as the sum of the 
kinetic energy operator and the electron-nuclear 
attraction operator, and from

宀，£1。=(2°=……=等 (29)

<0」H°+e.e・r. |<力〉=希(寥+0|巳巳1：. |<p/»
(30)

〈如| 上罗 + 巳 e. r. +c. f. p. I(pi)
=oki(Q° + e. r. +c. f. p. |dz» (31)

©=扌全 幺=苴叫 互以=■쯔*쯔=匸 (32) 
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it follows that

Ie. e. n +c. f. p.
一—〈(시e.e.r. +c.f・p. 丨山〉 、

⑦标 (33)

((pk I e. e. r. +c. f. p.泌Q

=〈由」+e.e. r. +c. Lp\少一〈时H이由》(34) 

which tells us that：

(a) If one takes Q as basis set, the config­
uration interaction gives formally first plus 
higher order energy, but the value is the same 
as that of the first order energy in terms of <!) 
basis.

(b) The difference of the expectation values 
as denoted by eq. (34) is exactly equivalent to 
the total energy evaluated by the Integral Hel­
lmann-Feynman formula, in this special case, 
in spite of the approximate nature of the °'s.

Thus, the conventional crystal field theory, 
even employing the most sophisticated method, 
is characterized by the following:

(1) The crystal field splitting parameter is 
regarded as the difference of the first order pe­
rturbation energies originated from the degene­
rated zero order states,

(2) It assumes the crystal field to be origin­
ated from a symmetric arrangement of point 
charges around the central metal atom or ion.

Now, the problem was that the crystal field 
model, which had been and is still successful 
in explaining optical spectra of complex mole­
cules by parametrizing the di仟erence of the 
first order perturbation energies6,7, involved 
serious difficulties when calculating 10Z)g from 
first principles8^11. This made people to take 
up molecular orbital calculations thus introduc­
ing interactions between metal and ligand elec­
trons. Thus gave reasonable values of lODq as 
reported by several authors12,"16. Hence, we fall 
into a dilemma as for the origin of the crystal 
field.
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There seems to be two possible explanations 
for the dilemma. Firstly, The point charge 
model is acceptable, but the splitting parameter 
may be the difference of the total perturbation 
energies rather than the first order perturbation 
energies. Secondly, the point charge model 
may not represent the true picture of the crystal 
field as maintained by those who prefer to beli­
eve in the ligand field theory.

At this point, an Integral Hellmann-Feynman 
approach to the problem appears worthwhile. 
Reliable wave functions obtained by MO calcu­
lations may be used as the final state wave fun­
ction in eq. (13)・ Besides including higher order 
perturbation energies, this enables the partitio­
ning of the contribution of the point charge 
potential to Such investigation is being 
carried out in our laboratory. A possible expl­
anation of the above mentioned dilemma is 
expected.
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