• Title/Summary/Keyword: Cryogenic test

Search Result 263, Processing Time 0.026 seconds

Performance Test of a Small Simulated High-Altitude Test Facility for a Gas-turbine Combustor (가스터빈 저온/저압 점화장치 구성 및 운영조건 확인 시험)

  • Kim, Tae-Woan;Lee, Yang-Suk;Ko, Young-Sung;Lim, Byeung-Jun;Kim, Hyeong-Mo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.153-156
    • /
    • 2008
  • Ignition and combustion performance of a gas-turbine engine were changed by various high-altitude condition. A goal of this study is to make the small test facility to simulate high-altitude condition. To perform the low pressure condition, a diffuser was used in various diffuser front of primary nozzle pressure. To perform the low temperature, heat exchanger was used in various mixture ratio of cryogenic air and ambient temperature air. The experimental result shows that high-altitude conditions can be controled by diffuser front of primary nozzle pressure and mixture ratio of cryogenic air and ambient temperature air.

  • PDF

Estimation of Machinability Turning Process for Al7075-T6 by Cryogenic Heat Treatment (극저온 열처리된 Al7075-T6의 선삭특성 분석)

  • Lim, Hak Jin;Oh, Jeong Kyu;Kim, Pyeong Ho;Lee, Jong Hwan;Kim, Jeong Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.865-870
    • /
    • 2013
  • In recent years, aluminum processing has been increasing in the aerospace, vehicle, airplane industries etc., because aluminum has abundant resources and has a high specific strength. Aluminum alloys have a high coefficient of thermal expansion therefore, it is necessary to consider the temperature problem in the cutting process. The objective of this research is to investigate the machinability of a hardened aluminum alloy Al7075-T6 by using cryogenic heat treatment. The machining test is conducted by comparing the cutting force and surface roughness, corresponding to various cutting conditions of depth of cut, cutting speed, and feed rate, with those of Al7075-T0.

Cool-down test of cryogenic cooling system for superconducting fault current limiter

  • Hong, Yong-Ju;In, Sehwan;Yeom, Han-Kil;Kim, Heesun;Kim, Hye-Rim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.57-61
    • /
    • 2015
  • A Superconducting Fault Current Limiter is an electric power device which limits the fault current immediately in a power grid. The SFCL must be cooled to below the critical temperature of high temperature superconductor modules. In general, they are submerged in sub-cooled liquid nitrogen for their stable thermal characteristics. To cool and maintain the target temperature and pressure of the sub-cooled liquid nitrogen, the cryogenic cooling system should be designed well with a cryocooler and coolant circulation devices. The pressure of the cryostat for the SFCL should be pressurized to suppress the generation of nitrogen bubbles in quench mode of the SFCL. In this study, we tested the performance of the cooling system for the prototype 154 kV SFCL, which consist of a Stirling cryocooler, a subcooling cryostat, a pressure builder and a main cryostat for the SFCL module, to verify the design of the cooling system and the electric performance of the SFCL. The normal operation condition of the main cryostat is 71 K and 500 kPa. This paper presents tests results of the overall cooling system.

Performance of Evaporation Heat Transfer Enhancement and Pressure Drop for Liquid Nitrogen (액체질소에 대한 증발 열전달 촉진 및 압력강하 성능)

  • Nam, Sang-Chul;Lee, Sang-Chun;Park, Byung-Duck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.363-372
    • /
    • 2000
  • An experiment was carried out to evaluate the heat transfer enhancement and the pressure drop characteristics for liquid nitrogen using wire-coil-insert technique under horizontal two-phase conditions. The tube inner diameters were 8 mm and 15 mm, respectively and the tube length was 4.7 m. The helix angle of the wire coil insert was $50^{\circ}$ and its length was 4.7 m. Heat transfer coefficients for both the plain and the enhanced test tubes were calculated from the measurements of temperatures, flow rates and pressure drops. A correlation in a power-law relationship of the Nusselt number, Reynolds number and Prandtl number for the heat transfer was proposed which can be available for design of cryogenic heat exchangers. The correlation showed that heat transfer coefficients for the wire-coil inserts were much higher than those for plain tubes, increased by more than $1.8{\sim}2.0$ times depending upon the range of the equivalent Reynolds number. The correlation was compared with other various correlations in the turbulent flow conditions.

Effect of C, Mn and Al Additions on Tensile and Charpy Impact Properties of Austenitic High-manganese Steels for Cryogenic Applications (극저온용 오스테나이트계 고망간강의 인장 및 충격 특성에 미치는 C, Mn, Al 첨가의 영향)

  • Lee, Seung-Wan;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.189-195
    • /
    • 2019
  • The effect of C, Mn, and Al additions on the tensile and Charpy impact properties of austenitic high-manganese steels for cryogenic applications is investigated in terms of the deformation mechanism dependent on stacking fault energy and austenite stability. The addition of the alloying elements usually increases the stacking fault energy, which is calculated using a modified thermodynamic model. Although the yield strength of austenitic high-manganese steels is increased by the addition of the alloying elements, the tensile strength is significantly affected by the deformation mechanism associated with stacking fault energy because of grain size refinement caused by deformation twinning and mobile dislocations generated during deformation-induced martensite transformation. None of the austenitic high-manganese steels exhibit clear ductile-brittle transition behavior, but their absorbed energy gradually decreases with lowering test temperature, regardless of the alloying elements. However, the combined addition of Mn and Al to the austenitic high-manganese steels suppresses the decrease in absorbed energy with a decreasing temperature by enhancing austenite stability.

A Study on Temperature Rising near Fatigue Crack Tip at Cryogenic Temperature (극저온 환경에서의 피로균열 선단의 온도상승에 관한 연구)

  • ;Maekawa, I.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.79-86
    • /
    • 1995
  • The structural materials for cryogenic technology have been recently developed to support the many modern large-scale application from superconducting magnets for nuclear fusion reactor, magnetic levitation railway to LNG tankers. However it is pointed out that quenching phenomenon is one of the serious problems for the integrity of these applications, which is mainly attributed to the rapid temperature rising in the material due to some extrinsic factors of structures. From the viewpoint of fracture mechanics, it is therefore very important to clarify the mechanism of temperature rising of structural material due to cyclic loading at cryogenic temperature. From this purpose, fatigue test was carried out for high manganese steel at liquid helium temperature(4.2K) using triangular stress waveform to identify both the mechanism of temperature rising near crack tip and the effect of loading stress waveform on temperature rising near crack tip and the effect of loading stress waveforms on temperature rising. As the results, two types of temperature rising, that is, regular and burst types were observed. And a periodical temperature rising corresponding to the stress waveforms was also found. The peaks of the temperature rising were recorded near both the maximum and the minimum values of the applied stress. The sudden temperature rises, which indicated the higher values than those of periodical temperature rises under the repetition of stress, were observed at the final region of crack growth. It was shown that the peak values of the temperature rising increased with stress intensity factor range.

CFD Study for the Design of Coolant Path in Cryogenic Etch Chuck

  • Jo, Soo Hyun;Han, Ji Hee;Kim, Jong Oh;Han, Hwi;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.92-97
    • /
    • 2021
  • The importance of processes in cryogenic environments is increasing in a way to address problems such as critical dimension (CD) narrow and bottlenecks in micro-processing. Accordingly, in this paper, we proceed with the design and analysis of Electrostatic Chuck(ESC) and Coolant in cryogenic environments, and present optimal model conditions to provide the temperature distribution analysis of ESC in these environments and the appropriate optimal design. The wafer temperature uniformity was selected as the reference model that the operating conditions of the refrigerant of the liquid nitrogen in the doubled aluminum path were excellent. Design of simulation (DOS) was carried out based on the wheel settings within the selected reference model and the classification of three mass flow and diameter case, respectively. The comparison between factors with p-value less than 0.05 indicates that the optimal design point is when five turns of coolant have a flow rate of 0.3 kg/s and a diameter of 12 mm. ANOVA determines the interactions between the above factor, indicating that mass flow is the most significant among the parameters of interests. In variable selection procedure, Case 2 was also determined to be superior through the two-Sample T-Test of the mean and variance values by dividing five coolant wheels into two (Case 1 : 2+3, Case 2: 3+2). Finally, heat transfer analysis processes such as final difference method (FDM) and heat transfer were also performed to demonstrate the feasibility and adequacy of the analysis process.

An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

  • Lee, Jin-Sung;You, Won-Hyo;Yoo, Chang-Hyuk;Kim, Kyung-Su;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.580-597
    • /
    • 2013
  • Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low ($-100^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083-O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

Mechanical Characteristics of Stainless Steel under Low Temperature Environment (극저온용 스테인레스 강의 저온거동 특성)

  • Hong, Jin-Han;Keum, Dong-Min;Han, Dae-Suk;Park, In-Bum;Chun, Min-Sung;Ko, Kyung-Wan;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.530-537
    • /
    • 2008
  • Austenitic stainless steels(SUS 304, SUS 316), which are used for safety control valve of LNG carrier, are occasionally exposed in the cryogenic environment. In this regards, it is required to evaluate the mechanical characteristics under the low temperature environment. In this study, a series of uniaxial tensile test was carried out varying temperature for austenitic stainless steel. The phenomena of the strain-induced plasticity have been observed on the all temperature ranges. The critical value for threshold of 2nd hardening due to the phase transformation induced plasticity as well as the increase of hardening have been reported. The summarized experimental results would be used for the validation of numerical techniques applicable for the nonlinear hardening behavior of austenitic stainless steel under the cryogenic temperature environment.

Design and Performance Test of a Closed Loop Thermal Control System for Thermal Vacuum Chamber (열진공 챔버용 폐회로 열제어시스템 설계 및 성능평가)

  • Seo, Heejun;Cho, Hyokjin;Park, Sungwook;Moon, Gueewon;Jung, Sanghun;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.88-97
    • /
    • 2016
  • A closed loop thermal control system simulates space thermal environment to verify the satellites' functionality in extremely cold/hot temperature. It is composed of a cryogenic blower, thermal shroud, heater, cryogenic valves. This paper presents an overview of closed loop thermal control system's design parameter and test results for control parameter. A capacity of blower is calculated through energy balance equation and an advantage/disadvantage for a shroud material and a type was analysed. The thermal control system is controlled by a constant density of fluid in the system. A requested performance of closed loop thermal control system was verified by measuring a homogeneity and stability of shroud through control parameter such as density and RPM of blower.