• Title/Summary/Keyword: Cryogenic fluids

Search Result 43, Processing Time 0.025 seconds

Design and manufacture of horn lens antennas of 80 GHz MM wave FMCW radar for cryogenic fluids level measurement

  • Jeon, S.M.;Mun, J.M.;Lee, S.C.;Sim, K.D.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.29-33
    • /
    • 2022
  • Recently, development of a cryogenic fluids storage tank for storing or transporting liquid hydrogen is actively in progress. In cryogenic fluids storage tanks, hydrogen evaporates due to the extreme temperature difference inside and outside the tank. As the mass of the cryogenic fluids changes with continuous vaporization, the fluids level also changes. Therefore, there is need for a method of accurately measuring the level change in the storage tank. In the case of general cryogenic fluids, it is difficult to accurately measure the level because the dielectric constant is very low. As a method of measuring cryogenic fluids level with low dielectric constant, it can be used an Millimeter wave (MM wave) FMCW radar sensor. However, the signal sensitivity is very weak and the level accuracy is poor. In this paper, the signal sensitivity is improved by designing the horn lens antenna of the existing 80 GHz FMCW radar sensor. Horn lens antenna is fabricated by FDM/SLA type 3D printer according to horn and lens characteristics. The horn is used to increase the signal gain and the lens improves the signal straightness. This makes it possible to measure the level of cryogenic fluids with a low dielectric constant.

Thermal Effects on Cryogenic Cavitating Flows around an Axisymmetric Ogive

  • Shi, Suguo;Wang, Guoyu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.324-331
    • /
    • 2010
  • Cavitation in cryogenic fluids generates substantial thermal effects and strong variations in fluid properties, which in turn alter the cavity characteristics. In order to investigate the cavitation characteristics in cryogenic fluids, numerical simulations are conducted around an axisymmetric ogive in liquid nitrogen and hydrogen respectively. The modified Merkle cavitation model and energy equation which accounts for the influence of cavitation are used, and variable thermal properties of the fluid are updated with software. A good agreement between the numerical results and experimental data are obtained. The results show that vapor production in cavitation extracts the latent heat of evaporation from the surrounding liquid, which decreases the local temperature, and hence the local vapor pressure in the vicinity of cavity becomes lower. The cavitation characteristics in cryogenic fluids are obtained that the cavity seems frothy and the cavitation intense is lower. It is also found that when the fluid is operating close to its critical temperature, thermal effects of cavitation are more obviously in cryogenic fluids. The thermal effect on cavitation in liquid hydrogen is more distinctively compared with that in liquid nitrogen due to the changes of density ratio, vapour pressure gradient and other variable properties of the fluid.

LIQUID FLOW AND EVAPORATION SIMULATION OF CRYOGENIC FLUID IN THE WALL OF CRYOGENIC FLUID CARGO CONTAINMENT SYSTEM (극저온 유체 화물창 방벽 내의 액체유동 및 기화 시뮬레이션)

  • Park, Bum-Jin;Lee, Hee-Bum;Rhee, Shin-Hyung;Bae, Jun-Hong;Lee, Kyung-Won;Jeong, Wang-Jo;An, Sang-Jun
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.9-18
    • /
    • 2009
  • The cargo containment system (CCS) for ships carrying cryogenic fluid consists of at least two levels of barriers and insulation layers. It is because, even though there is a small amount of leak through the primary barrier, the liquid tight secondary barrier blocks further leakage of the cryogenic fluid. However, once the secondary barrier is damaged, it is highly possible that the leaked cryogenic fluid flows through the flat joint made of glass wool and reaches the inner hull of the ship. The primary objective of the present study is to investigate the influence of the damage extent in the secondary barrier on the amount of leaked cryogenic fluid reaching the inner hull and the temperature distribution there. Simulation results using a computational fluid dynamics tool were compared with the experimental data for the leaked cryogenic fluid flow and evaporation in the secondary insulation layer. The experimental and computational results suggest that, unless there is a massive leak, the cryogenic fluid mostly evaporates in the insulation layer and does not reach the inner hull in the state of liquid.

The cavitating flow simulation in cryogenic fluid around 3D objects

  • Thai, Quangnha;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.264-267
    • /
    • 2010
  • This research focuses on the development of numerical code to deal with compressible two phase flow around three dimensional objects combined with cavitation model suggested by Weishyy et al. with k-e turbulent model. The cryogenic cavitation is carried out by considering the thermodynamic effect on physical properties of cryogenic fluids in physical point of view and implementing the temperature sensitivity in the energy equation of the government equations in numerical point of view, respectively. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils. Then, simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss numbers extending from single-phase flow conditions through the critical head break down point are discussed. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified.

  • PDF

Numerical Simulation Model for Cryogenic Pump Cavitation

  • Tani, Naoki;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.234-239
    • /
    • 2004
  • In the development of rocket turbo-pump, cavitation at the inducer is one of the major problems. Cryogenic fluids are commonly used for rocket propellant, therefore, thermodynamic effect becomes noticeable compared to conventional water cavitation. In the present study, a numerical simulation method for cryogenic cavitation is proposed, which reveals the difference between cryogenic and water cavitation.

  • PDF

A Study on the Leak-Proof of Full Containment Type Prestressed Concrete Structure (완전 밀폐형 PC 구조물의 누설 안전성에 관한 연구)

  • Kim Chung Kyun;Cho Seung Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.85-91
    • /
    • 2001
  • This paper presents safety analysis of LNG leakage in a prestressed concrete outer tank, which is strongly related on the leak checking effects of the PC structure with and without a residual compression zone based on the BS 7777 codes. The full containment type outer tank which is constructed by a prestressed concrete may be destroyed by leaked cryogenic fluids. The FE calculated results show that the total leak checking time of the PC structure with $10\%$ residual compression zone is about 9 days for $-162^{\circ}C$ liquids. But, three primary pumps in an inner tank may operate to send cryogenic fluids for 6 days, which are stored in an inner tank of $140,000m^3$ capacity This means that the prestressed concrete outer tank may be safe for $-162^{\circ}C$ cryogenic fluids leaked from the demolished inner tank.

  • PDF

STUDY ON BEHAVIOR OF LIQUID NITROGEN IN POROUS MEDIA (다공성 매질에서 액화질소의 거동에 대한 연구)

  • Choi, S.W.;Lee, W.I.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • The process of flow through porous media is of interest a wide range of engineering fields and areas, and the importance of fluid flow with a change in phase arises from the fact that many industrial processes rely on these phenomena for materials process, energy transfer. Especially, the flow phenomena of cryogenic liquid subjected to evaporation is of interest to investigate how the cryogenic liquid behaves in the porous structure. In this study, thermo physical properties, morphological properties of the glass wool with different bulk densities in terms of its temperature-dependence and permeability behaviors under different applying pressure are discussed. Using the experimentally determined properties, characteristics of two main experimental results are investigated. In addition, simulation results are used to realize the cryogenic liquid's flow in porous media, and are compared with experimental results. By using the experimentally determined properties, more reasonable results can be suggested in dealing with porous media flow.

Performance evaluation of 80 GHz FMCW Radar for level measurement of cryogenic fluid

  • Mun, J.M.;Lee, J.H.;Lee, S.C.;Sim, K.D.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.56-60
    • /
    • 2021
  • The microwave Radar used for special purposes in the past is being applied in various areas due to the technological advancement and cost reduction, and is particularly applied to autonomous driving in the automobile field. The FMCW (Frequency Modulated Continuous Wave) Radar can acquire level information of liquid in vessel based on the beat frequency obtained by continuously transmitting and receiving signals by modulating the frequency over time. However, for cryogenic fluids with small impedance differences between liquid medium and gas medium, such as liquid nitrogen and liquid hydrogen, it is difficult to apply a typical Radar-based level meter. In this study, we develop an 80 GHz FMCW Radar for level measurement of cryogenic fluids with small impedance differences between media and analyze its characteristics. Here, because of the low intrinsic impedance difference, most of the transmitted signal passes through the liquid nitrogen interface and is reflected at the bottom of the vessel. To solve this problem, a radar measurement algorithm was designed to detect multiple targets and separate the distance signal to the bottom of the vessel in order to estimate the precise position on the liquid nitrogen interface. Thereafter, performance verification experiments were performed according to the liquid nitrogen level using the developed radar level meter.

STUDY ON THE THERMAL-FLUID ANALYSIS OF CRYOGENIC CHAMBER FOR COLD CLIMATE TEST OF LARGE WIND TURBINE PARTS (대형 풍력발전기 부품의 극한 환경 시험을 위한 극저온 챔버의 열유동 해석에 대한 연구)

  • Kim, M.K.;Kang, Y.H.;Park, W.G.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.8-14
    • /
    • 2015
  • More and more, spaces are decreasing which satisfy multiple requirements for wind power plants. However, areas which have excellent wind resources and are free to civil complaints occupy a large space, although they are exposed to the cryogenic environment. This study conducted a thermal-fluid analysis of a cryogenic chamber for testing large wind turbine parts exposed to the cryogenic environment. The position of supply air is placed to the upper area to compare each cooling performance for each location of various outlets in mixing ventilated conditions. The study carried out CFD analysis for the chamber both with and without a test object. For the cases without the test object, the air temperature of the upper supply and down extract type chamber was cooled faster by 5-100% than the others. However, for the cases with the test object, the object temperature of upper supply and center extract on the opposite side type chamber was cooled faster by 33-132% than the others. The cooling performance by the air inside the chamber and the test object did not show the same pattern, which implicates the need to consider the cooling performance by not only the air but also the test object in the large cryogenic chamber design for testing large parts.

Development of Cryogenic Pump Test Facility (극저온 펌프 성능시험설비의 개발)

  • Kang, Jeong-Seek;Kim, Jin-Sun;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.4 s.25
    • /
    • pp.47-52
    • /
    • 2004
  • Cryogenic pump test facility (CPTF) is designed and developed in KARI. Hydraulic and cavitation performance of pump and inducer in cryogenic environment can be measured. Working fluid is liquid nitrogen and operating temperature is $-197^{\circ}C$. Run tank, catch tank of liquid nitrogen and their pressurizing tank has been built and remote tank pressure control system are installed. Maximum power of driving motor is 320 kW and its maximum speed is 32000rpm. Cryogenic fluids and lubricating systems are effectively separated that long test times are acquired. Therefore hydraulic and cavitation performance can be measured accurately and effectively. Pre-cooling test of the facility was successfully accomplished. This facility will contribute greatly to the development of turbopump for KSLV.