• 제목/요약/키워드: Cryogenic Characteristics

검색결과 303건 처리시간 0.021초

극저온 LNG 배관냉각 특성에 대한 연구 (A Study on Cryogenic Line Chill Down Characteristics of LNG)

  • 변병창;김경중;정상권;김모세;이상윤;이근태;김동민
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.808-818
    • /
    • 2022
  • In this research paper, we investigated the cryogenic line chill down characteristics of liquefied natural gas (LNG). A numerical analysis model was established and verified so that it can calculate the precise cooling characteristics of cryogenic fluid for the stable and safe utilization especially such as LNG and liquid hydrogen. The numerical modeling was programmed by C++ as an one-dimensional homogeneous model. The thermohydraulic cooling process was simulated using mass, momentum, energy conservation equations and appropriate heat transfer correlations. In this process, the relevant heat transfer correlations for nuclear boiling, transition boiling, film boiling, and single-phase heat transfer that can predict the experimental results were implemented. To verify the numerical modeling, several cryogenic line chill down experiments using LNG were conducted at the Korea Institute of Machinery & Materials (KIMM) LNG and Cryogenic Technology Center.

극저온 액체의 펄스 절연파괴에 관한 연구 (A Study on Pulse Dielectric Breakdown of Cryogenic Liquids)

  • 추영배;류경우;김상현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.477-479
    • /
    • 1987
  • An understanding of dielectric breakdown characteristics in cryogenic liquids is of importance in the development of various cryogenic and superconducting electrical equipments. This investigation describes measurements of pulse breakdown voltage, polarity effect, conditioning effect and time lag characteristics of cryogenic liquids.

  • PDF

LNG선용 버터플라이밸브의 유동특성에 관한 연구 (제2부 : 극저온에서의 밸브 유동특성) (Flow Characteristics of Cryogenic Butterfly Valve for LNG Carrier (Part 2 : Flow Characteristics under Cryogenic Condition))

  • 김상완;최영도;김범석;이영호
    • 한국유체기계학회 논문집
    • /
    • 제11권2호
    • /
    • pp.20-28
    • /
    • 2008
  • Recently, butterfly valves are used as control valves for industrial process. However, there are not so many reports on cryogenic butterfly valves in spite of broad application in LNG storage station and LNG carriers. Present study is focused on the investigation of the detailed hydrodynamic and aerodynamic characteristics of cryogenic butterfly valves to contribute to the operation during the handling on LNG transportation system, and to the practical utilization in design of butterfly valves and actuators. The results show that large recirculation vortices in the region downstream of the valve are founded and the cavitation flows are intensively generated on the surface of valve disc at the relatively small opening angle. The aerodynamic characteristics, lift, drag and torque, acting on the valve disc are calculated. The pressure distribution and the pressure loss coefficient of the cryogenic butterfly valve show almost similar pattern with those of the butterfly valve which is used on the normal temperature.

초저온 볼 밸브 설계 및 특성 (Design and Characteristics of cryogenic ball valve)

  • 김동수;김명섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.666-671
    • /
    • 2007
  • To acquire the safety along with durability of mechanical machinery products, we should consider the structural mechanics such as stress, deformation and dynamic vibration characteristics and identify those important aspects in the stage of preliminary design engineering. This cryogenic ball valve is used to transfer the liquified natural gas which temperature is $-196^{\circ}C$, supplied pressure is $168kg/cm^2$. For the cryogenic ball valve, the assurance of structural integrity and operability are essential to meet not only normal, abnormal loading conditions but also functionality during a seismic event. In this thesis, analytical approach and results using finite element analysis and computational method are herein presented to evaluate the aspects of structural integrity along with operability of cryogenic ball valve. In this study, we designed the high pressure cryogenic ball valve that accomplishes zero leakage by elastic seal at normal temperature and metal seal at high temperature.

  • PDF

티타늄 합금 소재 저속 영역 극저온 가공 특성 연구 (Study on Characteristics of Cryogenic Machining Process of Titanium Alloy at a Low Cutting Speed)

  • 김도영;김동민;박형욱
    • 한국정밀공학회지
    • /
    • 제34권4호
    • /
    • pp.237-241
    • /
    • 2017
  • Cryogenic machining uses liquid nitrogen (LN2) as a coolant. This machining process can reduce the cutting temperature and increase tool life. Titanium alloys have been widely used in the aerospace and automobile industries because of their high strength-to-weight ratio. However, they are difficult to machine because of their poor thermal properties, which reduce tool life. In this study, we applied cryogenic machining to titanium alloys. Orthogonal cutting experiments were performed at a low cutting speed (1.2 - 2.1 m/min) in three cooling conditions: dry, cryogenic, and cryogenic plus heat. Cutting force and friction coefficients were observed to evaluate the machining characteristics for each cooling condition. For the cryogenic condition, cutting force and friction coefficients increased, but decreased for the cryogenic plus heat condition.

Thermal Effects on Cryogenic Cavitating Flows around an Axisymmetric Ogive

  • Shi, Suguo;Wang, Guoyu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.324-331
    • /
    • 2010
  • Cavitation in cryogenic fluids generates substantial thermal effects and strong variations in fluid properties, which in turn alter the cavity characteristics. In order to investigate the cavitation characteristics in cryogenic fluids, numerical simulations are conducted around an axisymmetric ogive in liquid nitrogen and hydrogen respectively. The modified Merkle cavitation model and energy equation which accounts for the influence of cavitation are used, and variable thermal properties of the fluid are updated with software. A good agreement between the numerical results and experimental data are obtained. The results show that vapor production in cavitation extracts the latent heat of evaporation from the surrounding liquid, which decreases the local temperature, and hence the local vapor pressure in the vicinity of cavity becomes lower. The cavitation characteristics in cryogenic fluids are obtained that the cavity seems frothy and the cavitation intense is lower. It is also found that when the fluid is operating close to its critical temperature, thermal effects of cavitation are more obviously in cryogenic fluids. The thermal effect on cavitation in liquid hydrogen is more distinctively compared with that in liquid nitrogen due to the changes of density ratio, vapour pressure gradient and other variable properties of the fluid.

고온초전도 응용기기용 과냉질소 냉각시스템의 냉각특성 (Characteristics of Sub-cooled Nitrogen Cryogenic System for Applied High-Tc Superconducting Devices)

  • 강형구;김형진;배덕권;안민철;윤용수;장호명;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권1호
    • /
    • pp.38-42
    • /
    • 2004
  • The cryogenic system for 6.6 kV/200 A inductive superconducting fault current limiter (SFCL) was developed at Yonsei university in 2003. The sub-cooled nitrogen cryogenic system could be applied to not only SFCL but also many other applied high-Tc superconducting (HTS) devices like superconducting motor, superconducting generator and superconducting magnetic energy storage (SMES). Generally, the cooling capacity of GM-cryocooler depends on the load temperature. Therefore it is necessary to perform the cooling capacity test at no load condition to calculate the exact cooling power and heat load of cryogenic system. In this research, the cooling capacity test of GM-cryocooler was executed and the heat load of developed cryogenic system was calculated. The long run operation test results of sub-cooled nitrogen cryogenic system were successful in pressure and temperature condition. Moreover, the design and fabrication method of cryogenic system were introduced and the test results were described.

극저온 볼밀링 공정을 이용한 탄소나노튜브의 분산특성 연구 (A Study on the Dispersion Characteristics of Carbon Nanotubes using Cryogenic Ball Milling Process)

  • 이지훈;이경엽
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.49-54
    • /
    • 2010
  • The cryogenic ball milling was performed on carbon nanotubes (CNTs) at an extremely low temperature to increase the dispersion of CNTs. The effects of milling speed and time on the deagglomeration and structural changes of CNTs were studied. FESEM was used to analyze the dispersion and the change of particle size before and after milling process. Transmission electron microscopic (TEM) analysis was also investigated the effect of cryogenic ball milling on the morphological characteristics of CNTs. The structural changes by the cryogenic ball milling process were further confirmed by x-ray diffraction (XRD) and Raman spectroscopic analysis. The results showed that the agglomeration of CNTs was significantly reduced and amorphous structure was observed at high milling speed. However, the milling time has no great effect on the dispersion property and structural change of CNTs compared with milling speed.

A Study on the Electrical and Mechanical Properties of Conduction Cooling HTS SMES

  • Choi, Jae-Hyeong;Choi, Jin-Wook;Shin, H.S.;Kim, H.J.;Seong, K.C.;Kim, S.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권2호
    • /
    • pp.29-32
    • /
    • 2009
  • The conduction cooling HTS SMES magnet is operated in cryogenic temperature. The insulation design at cryogenic temperature is an important element that should be established to accomplish miniaturization that is a big advantage of HTS SMES. However, the behaviors of insulators for cryogenic conditions in air or vacuum are virtually unknown. Therefore, we need active research and development of insulation concerning application of the conduction cooling HTS SMES. Specially, this paper was studied about high vacuum and cryogenic temperature breakdown and flashover discharge characteristics between cryocooler and magnet-coil. The breakdown and surface flashover discharge characteristics were experimented at cryogenic temperature and vacuum. Also, we were experimented about mechanical properties of 4-point bending test. From the results, we confirmed that about research between cryocooler and magnet-coil established basic data in the insulation design.

CFD Simulation of thermoacoustic oscillations in liquid helium cryogenic system

  • wang, xianjin;niu, xiaofei;bai, feng;zhang, junhui;chen, shuping
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권1호
    • /
    • pp.1-6
    • /
    • 2021
  • Thermoacoustic oscillations (TAOs) could be often observed in liquid helium cryogenic system especially in half-open tubes. These tubes have closed warm end (300K) and open cold end (usually 4.4K). This phenomenon significantly induces additional heat load to cryogenic system and other undesirable effects. This work focuses on using computational fluid dynamics (CFD) method to study TAOs in liquid helium. The calculated physical model, numerical scheme and algorithm, and wall boundary conditions were introduced. The simulation results of onset process of thermoacoustic oscillations were presented and analyzed. In addition, other important characteristics including phase relation and frequency were studied. Moreover, comparisons between experiments and the CFD simulations were made, which demonstrated thevalidity of CFD simulation. CFD simulation can give us a better understanding of onset mechanism of TAOs and nonlinear characteristics in liquid helium cryogenic system.