• Title/Summary/Keyword: Crustal structure

Search Result 92, Processing Time 0.021 seconds

Shallow Crustal Structure of the Bransfield Basin Using an Autonomous Underwater Hydrophone

  • Kim, Kee-Hoon;Park, Min-Kyu;Hong, Jong-Kuk;Lee, Joo-Han
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.351-359
    • /
    • 2006
  • We investigated subsurface structures of the Bransfield Basin, the Antarctic with AUH (Autonomous Underwater Hydrophne) which was designed to record abyssal T-waves generated from submarine earthquakes. The data obtained from a multi-channel seismic survey and an AUH were used for this study. A seismic reflection method was applied to the multi-channel seismic survey data in order to identify bathymetry and sedimentary structures, and the signals recorded in the AUH were used to obtain deep structures as we applied a seismic refraction method. Even though we couldn’t investigate deeper and detailed structure in study area because of lack of Airgun’s capacity, the AUH showed possibilities for being used for a marine seismic survey. From this experiment, we decided the upper and lower sediment layer velocities, detected irregular basement topography probably caused by submarine volcanic/magmatic activities, and retrieved the velocity of the basement and the depth of the sediment layer/basement boundary.

  • PDF

Dispersion of Rayleigh Waves in the Korean Peninsula

  • Cho, Kwang-Hyun;Lee, Kie-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.231-240
    • /
    • 2006
  • The crustal structure of the Korean Peninsula was investigated by analyzing phase velocity dispersion data of Rayleigh waves. Earthquakes recorded by three component broad-band velocity seismographs during 1999-2004 in South Korea were used in this study. The fundamental mode Rayleigh waves were extracted from vertical components of seismograms by multiple filter technique and phase match filter method. Phase velocity dispersion curves of the fundamental mode signal pairs for 14 surface wave propagation paths on the great circle in the range 10 to 80 sec were computed by two-station method. Treating the shear velocity of each layer as an independent parameter, phase velocity data of Rayleigh wave were inverted. All the result models can be explained by a rather homogeneous crust of shear-wave velocity increasing from 2.8 to 3.25 km/sec from top to about 33 km depth without any distinctive crustal discontinuities and an uppermost mantle of shear-wave velocity between 4.55 and 4.67 km/sec. Our results turn out to agree well with recent study of Cho et al. (2006 b) based on the analysis of seismic background noises to recover short-period (0.5-20 sec) Rayleigh- and Love-wave group velocity dispersion characteristics.

  • PDF

Influence to give to a performance evaluation and sunlight reflection properties of the building crustal material (건물외피 재료의 성능평가와 일사반사 특성에 미치는 영향)

  • Sang, Hie-Sun;Kwak, Sung-Gun;Lee, Jeung-Seok;Yoshida, Atsumada
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.177-186
    • /
    • 2011
  • We can expect reduction of the sunlight absorption quantity to a structure and an earth surface, a decline of the surface temperature and a decline of the heat transport volume in what there is a method I give the sunlight reflectance in the aspect to the surface of the building by painting sunlight high reflectance paint, and to reduce the sunlight absorption quantity to a structure and an earth surface and does so, and, in addition, a method high water retentivity of tree planting and the road surface of the city space uses evaporation latent heat of the water by making it, and to restrain a rise in temperature is thought about. and It is thought that I reduce the sunlight absorption quantity to not only the structure but also other structures and attention gathers to the reflexive reflector reflecting in the direction again and it is wide as a marker of a board and the clothing of the traffic sign and is used the incidence energy from a source of light for this reflexive reflector now by there is it and devises surface structure again, and controlling reflection directivity for the sunlight for the purpose of raising night visibility.

  • PDF

The Crustal and Upper Mantle Velocity Structure of the Southern Korean Peninsula from Receiver Functions and Surface-Wave Dispersion (수신함수와 표면파 분산의 동시역산을 이용한 한반도 남부지역의 지각과 상부맨틀 연구)

  • Yoo, H.J.;Lee, K.;Herrmann, R.B.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.61-70
    • /
    • 2006
  • 3-D S-wave velocity model in the southern Korean Peninsula is investigated by using the joint inversion of receiver functions and surface-wave dispersion. A peninsula average Rayleigh-wave phase velocity in the 10-150 seconds range and tomographic estimates of the Rayleigh and Love wave group velocities in the 0.5-20 seconds period range determined using a $12.5{\times}12.5\;km$ grid for the southern part of the peninsula are used for the inversion. Receiver functions were determined from broadband (STS-2), short-period (SS-1) and acceleration (Episensor) channels of 95 stations. The dense distribution of the stations in the Peninsula permits us to examine the 3-D crustal structure in detail. The inversion result shows the variation and characteristics of S-wave velocity in the crust and upper mantle of the southern Korean Peninsula very well.

  • PDF

Crustal Structure of the Southern Part of Korea (한국(韓國) 남부지역(南部地域)의 지각구조(地殼構造))

  • Kim, Sung Kyun;Jung, Bu Hung
    • Economic and Environmental Geology
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 1985
  • Events detected by the KIER microearthquake network operated in the Southern Part of Korea for 265 days in 1982~1984 were reviewed, and some of them were identified to be a dynamite explosion from several construction sites. The purpose of the present work is to determine the crustal structure of the Southern Korea using the time-destance data obtained from such explosion seismic records. The time·distance data can be well explained by a crustal model composed of four horizontal layers of which thickness, p and s-wave velocity ($V_p$ and $V_s$) are characterized as follows. 1st layer (surface) ; 0~2km, $V_p=5.5km/sec$, $V_s=3.3km/sec$ 2nd layer (upper crust) ; 2~15km, $V_p=6.0km/sec$, $V_s=3.5km/sec$ 3rd layer (lower crust) ; 15~29km, $V_p=6.6km/sec$, $V_s=3.7km/sec$ 4th layer (upper mantle) ; 29km~ , $V_p=7.7km/sec$, $V_s=4.3km/sec$ The relatively shallow crust·mantle boundary and low $P_n$ velocity compared with the mean values for stable intraplate region are noteworthy. Supposedely, it is responsible for the high heat flow in the South-eastern Korea or an anomalous subterranean mantle. The mean $V_p/V_s$ ratio calculated from the relation between p-wave arrival and s-p arrival times appears to be 1.735 which is nearly equivalent to the elastic medium of ${\lambda}={\mu}$. However, the ratio tends to be slightly larger with the depth. The ratio is rather high compared with that of the adjacent Japanese Island, and the fact suggests that the underlying crust and upper mantle in this region are more ductile and hence the earthquake occurrences are apt to be interrupted. As an alternative curstal model, a seismic velocity structure in which velocities are successively increased with the depth is also proposed by the inversion of the time·distance data. With the velocity profile, it is possible to calculate a travel time table which is appropriate to determine the earthquake parameters for the local events.

  • PDF

3-D Crustal Velocity Tomography in the Central Korean Peninsula (한반도 중부지역의 3차원 속도 모델 토모그래피 연구)

  • Kim, So Gu;Li, Qinghe
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.235-247
    • /
    • 1998
  • A new technique of simultaneons inversion for 3-D seismic velocity structure by using direct, reflected, and refracted waves is applied to the center of the Korean Peninsula including Pyongnam Basin, Kyonggi Massif, Okchon Fold Zone, Taebaeksan Fold Zone, Ryongnam Massif and Kyongsang Basin. Pg, Sg, PmP, SmS, Pn, and Sn arrival times of 32 events with 404 seismic rays are inverted for locations and crustal structure. 5 ($1^{\circ}$ along the latitude)${\times}6$ ($0.5^{\circ}$ along the longitude) ${\times}8$ block (4 km each layer) model was inverted. 3-D seismic crustal velocity tomography including eight sections from the surface to the Moho, eight profiles along latitude and longitude and the Moho depth distribution was determined. The results are as follows: (1) the average velocity and thickness of sediment are 5.15 km/sec and 3-4 km, and the velocity of basement is 6.12 km/sec. (2) the velocities fluctuate strongly in the upper crust, and the velocity distribution of the lower crust under Conrad appears basically horizontal. (3) the average depth of Moho is 29.8 km and velocity is 7.97 km/sec. (4) from the sedimentary depth and velocity, basement thickness and velocity, form of the upper crust, the Moho depth and form of the remarkable crustal velocity differences among Pyongnam Basin, Kyonggi Massif, Okchon Zone, Ryongnam Massif and Kyongsang Basin can be found. (5) The different crustal features of ocean and continent crust are obvious. (6) Some deep index of the Chugaryong Rift Zone can be located from the cross section profiles. (7) We note that there are big anisotropy bodies near north of Seoul and Hongsung in the upper crust, implying that they may be related to the Chugaryong Rift Zone and deep fault systems.

  • PDF

Crustal structure of the Korean peninsula (한반도 지각 속도구조)

  • Kim, Ki-Young;Hong, Myung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.43-51
    • /
    • 2007
  • In order to investigate the velocity structure of the southern part of the Korean peninsula, exploded seismic signals were recorded for 120 s along a 294-km WNW-ESE line and 150 s along a 335-km NNW-SSE line in 2002 and 2004, respectively. Velocity tomograms were derived from inverting P-wave and S-wave first arrival times. The raypaths indicate several midcrust interfaces. The shallowest one is at the approximate depth of $2{\sim}3\;km$ with refraction velocities of approximately Vp=6.0 and Vs=3.5 km/s, respectively. The second one of $15{\sim}17\;km$ depth has refraction velocities of approximately Vp=7.1 and Vs=3.7 km/s, respectively. The deepest significant interface varies in depth from 30.8 km to 36.1 km. The critically refracting Vp of $7.8{\sim}8.1\;km/s$ and Vs of $4.2{\sim}4.6\;km/s$ along this interface which may correspond to the Moho discontinuity. The velocity tomograms show (1) existence of a low-velocity zone centered at $6{\sim}7\;km$ depth under the Okchon fold belt and the Yeongnam massif, (2) extension of the Yeongdon fault down to greater than 10 km, and (3) existence of high-velocity materials under the Gyeongsan basin less than 4.2 km thick.

  • PDF

A comparative study on the crustal structure models using microearthquakes in the southeastern part of the Korean peninsula from 1995 to 1996 (1995-96년 한반도 남동부 지역의 미소지진 자료를 이용한 지각구조 모델의 비교 연구)

  • Lee, Gi Hwa;Jeong, Tae Ung
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • Using the microearthquake data acquired from 1995 to 1996 through the seismic network operated by the Korea Institute of Geology, Mining & Materials (KIGAM), the three P-wave velocity models proposed by Lee (1979), Kim·Kim (1983) and Kim·Jung (1985) concerning the structure of the southeastern part of the Korean peninsula were examined in terms of the least square errors of the P-wave arrival times. The three models do not differ significantly in arrival time residuals except that the Lee's model gives slightly deeper focuses than the others. The layering of the crust of the peninsula is not clear as yet and to be studied by more earthquake and explosion data in the future.

  • PDF

A Study on the Crustal Structure of South Korea by using Seismic Waves (지진파(地震波)를 이용(利用)한 남한(南韓)의 지각구조(地殼構造) 연구(硏究))

  • Kim, Sang Jo;Kim, So Gu
    • Economic and Environmental Geology
    • /
    • v.16 no.1
    • /
    • pp.51-61
    • /
    • 1983
  • By using local earthquake data, the Korean crust model and travel-time tables were determined. The upper crustal earthquakes (Hongsung event and Ssanggyesa event) were considered as auxiliary information, and the lower crustal earthquakes (Uljin event and Pohang event) played an important role in determining model parameters. The possible existence of Low Velocity Layer (LVL) in the upper mantle was suggested by discrepancy in the arrival times of Sariwon earthquake which occurred below Moho discontinuity. Computer program for the determination of the model parameters was developed in order to screened out the optimum parameters by comparing the travel times of observed data with theoretical ones. We found that the discontinuities of Conrad, Moho, and upper and lower boundaries of LVL have their depth of 15, 32, 55 and 75 Km, respectively. The velocities of P-and S-wave in the layers between those discontinities were found to be (1) 5.98, 3.40 Km/sec (2) 6.38, 3.79 Km/sec (3) 7.95, 4.58 Km/sec (4) unknown (5) 8.73, 5.05 Km/sec, respectively from the top layer. Travel-time tables were also computed for the inter-local earthquakes which have their direct wave paths above the LVL.

  • PDF

Crustal Structure Beneath Korea Seismic Stations (Inchon, Wonju and Pohang) Using Receiver function (수신함수에 의한 한국 지진관측소(인천, 원주 포항) 하부의 지각구조 연구)

  • Kim, So-Gu;Lee, Seung-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.43-54
    • /
    • 2004
  • The broadband receiver functions are developed from teleseismic P waveforms recorded at Wonju(KSRS), Inchon(IRIS), and Pohang(PHN), and are analyzed to examine the crustal structure beneath these stations. The teleseismic receiver functions are inverted in the time domain of the vertical P wave velocity structures beneath the stations. Clear P-to-S converted phases from the Moho interface are observed in teleseismic seismograms recorded at these stations. The crustal velocity structures beneath the stations are estimated by using the receiver function inversion method(Ammon et al., 1990). The general features of inversion results are as follows: (1) For the Inchon station, the Conrad discontinuity exists at 17.5 Km(SW) deep and the Moho discontinuity exists at 29.5 Km(NW) and 30.5 Km(SE, SW) deep. (2) The shallow crustal structure beneath Wonju station may be covered with a sedimentary rock of a 3 Km thickness. The average Moho depth is assumed about 33.0 Km, and the Conrad discontinuity may exist at 17.0 Km(NE) and 21.0 Km(NW) deep. (3) For Pohang station, the thickness of shallow sedimentary layer is a 3.0 Km in the direction of NE and NW. The Moho depth is 28.0 Km in the direction of the NE and NW. The Conrad discontinuity can be estimated to be existed at 21.0 Km deep for the NE and NW directions.