• Title/Summary/Keyword: Crushing strength

Search Result 218, Processing Time 0.021 seconds

Effects of vibration due to concrete crusher on bond strength of latex-modified concrete (LMC) (파쇄기 진동이 Latex-modified concrete (LMC)의 부착강도에 미치는 영향)

  • Cha, Hun;Kim, Dae-Geon;Choi, Sang-Hwan;Moon, Kyeong-Sik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.9-10
    • /
    • 2014
  • Cracks on the surface of latex-modified concrete using ready mix concrete (R-LMC) are attributable to its sensitivity to air temperature, relative humidity and wind velocity. Insufficient curing under the windy condition causes plastic shrinkage cracks. The cracked areas should be replaced to prevent development of larger cracks. This paper investigated how the vibration resulted from crushing concrete for replacement of the partial cracked area affects bond strength of R-LMC at early age. To analyze bond strength of R-LMC, the commercial Finite Element (FE) program, ABAQUS Standard/Implicit version 6.12 was used, and bond strength was tested by ASTM C1583-04. The real vibration was applied to this FE model using an acceleration measurement equipment.

  • PDF

Evaluation of Bamboo Reinforcements in Structural Concrete Member

  • Siddika, Ayesha;Al Mamun, Md. Abdullah;Siddique, Md. Abu Bakar
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.4
    • /
    • pp.13-19
    • /
    • 2017
  • This study is based on the use and performance of bamboo reinforcements in construction of low-cost structures. This study investigated the physical and mechanical properties of bamboo reinforcements. Bamboo reinforced concrete beam specimens were tested with different reinforcement ratios and observed the load capacity, deflection and failure patterns. It was observed that, flexural strength of bamboo reinforced column is sufficient higher than plain cement concrete and comparable to steel reinforced concrete beams. Bamboo reinforced concrete columns with different reinforcement ratio also tested and observed the ultimate compressive strength and failure pattern. It found, all columns failed in a similar pattern due to crushing of concrete. According to cost analysis, bamboo reinforced beams and columns with moderate reinforcement ratio showed the best strength-cost ratio among plain cement concrete and steel reinforced concrete.

Fabrication of Calcined Clay Granule Comprising Zeolite (제올라이트를 함유하는 소성점토의 제조)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Park, Chong-Lyuck;Jeon, Ho-Seok;Jeong, Soo-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.239-246
    • /
    • 2008
  • This research tried to find out the optimum fabrication method of calcined clay granules comprising zeolite. Kaolin clay and natural zeolite powder were used as raw materials of calcined clay, and silica stone powder was used for controlling the porosity of the granules. The granulation was performed with two kinds of granulators: a pan granulator and a high-shear mixer granulator. Various granules were fabricated by the mixing ratios and the rotation speeds of the granulators, and were heated from 400 to $700^{\circ}C$ at $100^{\circ}C$ interval. The crushing strength, pore size distribution, and CEC of the granules were measured. The evaluation method for the resistance of granules to human treading was created and the tests were conducted at dry and wet conditions. The resistance and crushing strength improved in proportion to the rotation speed of the granulator and the heating temperature, but the CEC decreased. The pellet made by the pan granulator did not have the strength against treading upon heating to below $700^{\circ}C$, but the pellet made by the high-shear mixer granulator endured the treading test upon heating to over $500^{\circ}C$

A Study on the Compression Characteristics of Decomposed Granite Soil Based on Single Particle Crushing Property (단입자파쇄특성에 기초한 화강풍화토의 압축특성에 관한 연구)

  • 함태규;조용성;김유성
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.103-111
    • /
    • 2004
  • There are some problems in evaluating the bearing capacity of decomposed granite soils by general equations on account of their inherent compressibility and crushability. In order to investigate this kind of the engineering characteristics on decomposed granite soils in detail, it is necessary to how the micro property of the single particle composing the granite soils, and then the relevance to the macro characteristics of the soils has to be cleared. The reason why the single particle properties are not studied is first the difficulty to find out some regulating parameters, and secondly little understanding of its significance. Furthermore, the water in the decomposed granite soils accelerates the particle crushing. Consequently, increasing of compressibility and decreasing of shear strength would occur. Actually, when the ground settlement is a big issue in the embanked ground using the decomposed granite soils, the sensitive change of compressibility due to the change of water content in the ground becomes conspicuous. In this study, the single particle strength characteristics are studied and microscopic particle shape analyses are performed. In addition the compressibility of the decomposed granite soils and water content effect on the compressibility are analysed based on the test results.

The strength characteristic of extruding solid according to substitution ratio and curing methods of waste concrete powder (폐콘크리트 미분말 대체율 및 양생방법에 따른 압출경화체의 강도특성)

  • Yu, Jae-Seong;Kim, Jin-Man;Lee, Myeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.49-50
    • /
    • 2015
  • Recently, by-products from concrete industry are generated in large quantities because of urban redevelopment. Accordingly, waste concrete powder(WCP) inevitably generated in the course of crushing, screening, and separating the waste concrete also show high emission and be increasing gradually, but which is mostly buried with waste concrete aggregate. This is a basic research to increase the value added utilization rate of WCP. We have examined strength characteristic of extruding panel with WCP, depending on the curing methods. The result of study shows similar strength to the base specimen in autoclave curing condition. And in autoclave curing condition, the specimen with WCP of 20% and 30% satisfy the target strength of 14MPa.

  • PDF

Successive recycled coarse aggregate effect on mechanical behavior and microstructural characteristics of concrete

  • Ashish, Deepankar K.;Saini, Preeti
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • With the increase in industrialization and urbanization, growing demand has enhanced rate of new constructions and old demolitions. To avoid serious environmental impacts and hazards recycled concrete aggregates (RCA) is being adopted in all over the world. This paper investigates successive recycled coarse aggregates (SRCA) in which old concrete made with RCA in form of concrete cubes was used. The cubes were crushed to prepare new concrete using aggregates from crushing of old concrete, used as SRCA. The mechanical behavior of concrete was determined containing SRCA; the properties of SRCA were evaluated and then compared with natural aggregates (NA). Replacement of NA with SRCA in ratio upto 100% by weight was studied for workability, mechanical properties and microstructural analysis. It was observed that with the increase in replacement ratio workability and compressive strength decreased but in acceptable limits so SRCA can be used in low strength concretes rather than high strength concrete structures.

Loss of strength in asbestos-cement water pipes due to leaching

  • Gil, Lluis;Perez, Marco A.;Bernat, Ernest;Cruz, Juan J.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.655-663
    • /
    • 2011
  • Asbestos-cement is a material with valuable strength and durability. It was extensively used for water distribution pipes across the world from the 1950s until the early 1980s. The network of pipes in this case study dates from the 1970s, and after more than 30 to 40 years of service, some pipes have been found to break under common service pressure with no apparent reason. A set of mechanical tests was performed including bending, compression, pressure and crushing tests. Microscopy analysis was also used to understand the material behaviour. Tests showed that there was a clear loss of strength in the pipes and that the safety factor was under the established threshold in most of the specimens. Microscopy results showed morphological damage to the pipes. The loss of strength was attributed to a leaching effect. Leaching damages the cement matrix and reduces the frictional interfacial shear stress.

Behavior, Design, and Modeling of Structural Walls and Coupling Beams - Lessons from Recent Laboratory Tests and Earthquakes

  • Wallace, John W.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.3-18
    • /
    • 2012
  • Observed wall damage in recent earthquakes in Chile and New Zealand, where modern building codes exist, exceeded expectations. In these earthquakes, structural wall damage included boundary crushing, reinforcement fracture, and global wall buckling. Recent laboratory tests also have demonstrated inadequate performance in some cases, indicating a need to review code provisions, identify shortcomings and make necessary revisions. Current modeling approaches used for slender structural walls adequately capture nonlinear flexural behavior; however, strength loss due to buckling of reinforcement and nonlinear and shear-flexure interaction are not adequately captured. Additional research is needed to address these issues. Recent tests of reinforced concrete coupling beams indicate that diagonally-reinforced beams detailed according to ACI 318-$11^1$ can sustain plastic rotations of about 6% prior to significant strength loss and that relatively simple modeling approaches in commercially available computer programs are capable of capturing the observed responses. Tests of conventionally-reinforced beams indicate less energy dissipation capacity and strength loss at approximately 4% rotation.

Development of Simplified Collision and Grounding Strength Assessment System of Oil Tankers (유조선의 간이 충돌/좌초강도 평가시스템 개발)

  • Lee T.K.;Kim J.D.;Chun T.B.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.86-94
    • /
    • 1999
  • This paper describes a development of Collision/grounding Strength Assessment System (COSAS) using simplified method. This method is formulated in closed-form equation by taking into account crushing caused by bulbous bow collision and cutting caused by forward speed grounding. To verify the accuracy of the developed system, some examples for test models of double side/bottom structure in collision/grounding situation are considered. This system might be useful for analysis of structural damage of oil tankers in collision/grounding.

  • PDF

Seismic Performance of High-Strength Concrete Columns

  • Hwang Sun-Kyoung;Yun Hyun-Do;Han Byung-Chan;Park Wan-Shin;Kim Sun-Woo;Han Min-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.41-44
    • /
    • 2004
  • This experimental investigation was conducted to examine the behaviour of eight one-third scale columns made of high-strength concrete (HSC). The columns were subjected to a constant axial load corresponding to 30 per cent of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement, tie configuration and tie yield strength. Columns with 42 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. Relationships between the calculated damage index and the observed damage such as initial crack, spalling of concrete, buckling of longitudinal bar, and crushing of concrete are propose.

  • PDF