• Title/Summary/Keyword: Crushed rock

Search Result 88, Processing Time 0.022 seconds

Evaluation of the Performance of Woodchip-filled Infiltration Trench Treating Stormwater from Highway (고속도로 강우유출수 처리를 위한 우드칩 충진 침투도랑의 성능평가)

  • Park, Kisoo;Kang, Heeman;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.183-193
    • /
    • 2016
  • In this study, design and performance of infiltration trench using woodchip as media for treating stormwater from highway were examined through field monitoring. Average reduction efficiency for TSS, COD, BOD, TN, and TP was 88%, 94%, 85%, 80%, and 75% respectively, which is similar to values reported by other studies and design manuals even though direct comparison is not possible due to different monitoring and design conditions. Mean field infiltration rate estimated by measuring the change of water depth inside the observation well was about 40mm/hr, and the time taken for complete infiltration was about 0.83days, which corresponds well with design criteria recommended by MOE guidelines in Korea. In addition, according to analysis of infiltration rate and reduction efficiency, effective rainfall depth applied for determining water quality volume(WQv), 5mm was found to be properly established as design criteria. Woodchip must be considered and included as an alternative media together with crushed rock and gravel into the design guidelines because it has more advantages in terms of weight, porosity, cost, and easiness of management than other media materials.

Long-Term Compressive Strength and Durability Properties of "CSG" Materials by Freezing-Thawing Test (동결융해시험에 의한 "CSG" 재료의 장기강도 및 내구 특성)

  • Jin, Guangri;Kim, Kiyoung;Moon, Hongduk;Quan, Hechun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.35-43
    • /
    • 2016
  • With the development of construction technology, constructions of dam and levee (dike) as well as the environmental problems are becoming issues. Recently, many countries have tried to develop and used CSG (Cemented Sand and Gravel), which needs fewer requirements than others in aggregates, constructability and ground condition during the dam construction. Mixing up with small amount of cement, CSG is able to increase the strength and proceed accelerated construction without artificial gradation adjustment of riverbed aggregate and crushed rock on construction site. Thus, CSG can minimize environmental damage resulted from quarries mining and reduce cost of construction. Unlike heat of hydration condition that regular concrete usually met, CSG exposes to repeated dry-wet and freezing and thawing environment. Thus, consider the importance of structure of dam or levee, intensive study on the durability of CSG is needed. In this study, freezing and thawing experiment was carried out to evaluate the durability of CSG. In results, the durability factor of CSG is 30~40 or >40 when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. The unconfined compressive strength is reduced to 30~50% or 40~70% when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. Taken together, the strength and durability of CSG is reliable when the amount of cement is over $0.8kN/m^3$.

Centrifugal Test on Behavior of the Dolphin Structure under Ship Collision (선박충돌 시 돌핀 구조물의 거동에 대한 원심모형실험)

  • Oh, SeungTak;Bae, WooSeok;Cho, SungMin;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.61-70
    • /
    • 2011
  • The impact protection system consists of an arrangement of circular sheet pile cofferdams-denoted dolphin structuredeeply embedded in the seabed, filled with crushed rock and closed at the top with a robust concrete cap. Centrifuge model tests were performed to investigation the behaviors of dolphins in this study. Total 7 quasi-model tests and 11 dynamic model tests were performed. The main experimental results can be summarized as follows. Firstly, The experimental force-displacement results for quasi-static tests show a limited influence on the initial stiffness of the structure from the change in fill density and the related change in the stiffness of the fill. And by comparing the dissipation at the same dolphin displacement it was found that the denser fill increase the dissipation by 16% for the 20m dolphin and by 23% for the 30m dolphin. The larger sensitivity for the large dolphin is explained by a larger contribution to the dissipation from strain in the fill. In low level impacts the dynamic force-response is up to 26~58% larger than the quasi-static and the dissipation response is showed larger in small displacement. Hence, it is concluded conservative to use the quasi-static response characteristics in the approximation of the response, and it is further concluded that the dolphin resistance to low level impacts is demonstrated to be equivalent and even superior to the high level impacts.

Evaluation of Engineering Characteristics and Utilization of Nonmetal Mining Waste Powder as Geo-Materials (비금속 광산 폐분의 공학적 특성 및 활용 가능성 분석)

  • Cho, Jinwoo;Lee, Yongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.71-78
    • /
    • 2011
  • This paper aims to present the evaluation of engineering characteristics and reusing possibility of waste powders produced in dolomite and limestone nonmetal mining by physical and mechanical experiments on compaction, uniaxial compressive strength, permeability, chemical composition, and so on. Granite soil, 2 types of limestone waste powder, and 1 type of dolomite waste powder were used for main materials, and cement and bentonite were used for admixed materials in this experiments. The findings based on the experimental results are the severe difference of chemical composition of the dolomite & limestone waste powder and the crushed rock waste powder, and the outstanding of engineering characteristics of the dolomite waste powder with high content of MgO compared with the limestone waste powder. The engineering properties on compaction, uniaxial compressive strength, and permeability are enhanced with increase of admixed ratio of waste powder on granite soil. From the experimental results, it can be suggested that the dolomite waste powder admixed with in-situ granite soil is useful as geo-materials with considering of distribution costs.

Compression Characteristics of Jeju Island Beach Sands (제주 해안지역 모래의 압축 특성)

  • Nam, Jung-Man;Cho, Sung-Hwan;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.103-114
    • /
    • 2007
  • Sands distributed in Jeju island's coastal areas, Korea, can be classified as silicate sand derived from volcanic rock, carbonate sand derived from shells, and mixed sands containing both silicate and carbonate sands. These three types of sands typically exist in Jeju coastal areas. Samples of silicate, carbonate and mixed sands were obtained from Samyang beach, Gimnyeong beach, and Jeju harbor area, respectively. Compression tests were conducted to assess the compression characteristics of these sands. As a result of these tests, each sand showed different behaviors. For Samyang beach sand, it appeared that initial compression is a larger than the other two sands. For Cimnyeong and Jeju harbor sands, however, the additional compression occurred after initial compression. This could result from the crushing, shattering, and rearrangement of sand particles. In addition, settlement behavior of Jeju harbor ground according to the construction stages was analyzed using the measured data. It showed that in addition to the initial elastic compression, a considerable additional compression occurred with time. The settlements of Jeju harbor ground were predicted by using the elastic settlement calculation methods (empirical methods) and the compression test method. The empirical methods, which did not consider the crushing, shattering, and rearrangement of particles could show smaller result than that occurring actually.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

Cesium Sorption to Granite in An Anoxic Environment (무산소 환경에서의 화강암에 대한 세슘 수착 특성 연구)

  • Cho, Subin;Kwon, Kideok D.;Hyun, Sung Pil
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.101-109
    • /
    • 2022
  • The mobility and transport of radioactive cesium are crucial factors to consider for the safety assessment of high-level radioactive waste disposal sites in granite. The retardation of radionuclides in the fractured crystalline rock is mainly controlled by the hydrochemical condition of groundwater and surface reactions with minerals present in the fractures. This paper reports the experimental results of cesium sorption to the Wonju Granite, a typical Mesozoic granite in Korea, performed in an anaerobic chamber that mimics the anoxic environment of a deep disposal site. We measured the rates and amounts of cesium (133Cs) removed by crushed granite samples in different electrolyte (NaCl, KCl, and CaCl2) solutions and a synthetic groundwater solution, with variations in the initial cesium concentration (10-5, 5×10-6, 10-6, 5×10-7 M). The cesium sorption kinetic and isotherm data were successfully simulated by the pseudo-second-order kinetic model (r2= 0.99) and the Freundlich isotherm model (r2= 0.99), respectively. The sorption distribution coefficient of granite increased almost linearly with increasing biotite content in granite samples, indicating that biotite is an effective cesium scavenger. The cesium removal was minimal in KCl solution compared to that in NaCl or CaCl2 solution, regardless of the ionic strength and initial cesium concentration that we examined, showing that K+ is the most competitive ion against cesium in sorption to granite. Because it is the main source mineral of K+ in fracture fluids, biotite may also hinder the sorption of cesium, which warrants further research.

Analysis of Reinforcement Effect of Hollow Modular Concrete Block on Sand by Laboratory Model Tests (실내모형실험을 통한 모래지반에서의 중공블록 보강효과 분석)

  • Lee, Chul-Hee;Shin, Eun-Chul;Yang, Tae-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.49-62
    • /
    • 2022
  • The hollow modular concrete block reinforced foundation method is one of the ground reinforcement foundation methods that uses hexagonal honeycomb-shaped concrete blocks with mixed crushed rock to reinforce soft grounds. It then forms an artificial layered ground that increases bearing capacity and reduces settlement. The hollow modular honeycomb-shaped concrete block is a geometrically economical, stable structure that distributes forces in a balanced way. However, the behavioral characteristics of hollow modular concrete block reinforced foundations are not yet fully understood. In this study, a bearing capacity test is performed to analyze the reinforcement effectiveness of the hollow modular concrete block through the laboratory model tests. From the load-settlement curve, punching shear failure occurs under the unfilled sand condition (A-1-N). However, the filled sand condition (A-1-F) shows a linear curve without yielding, confirming the reinforcement effect is three times higher than that of unreinforced ground. The bearing capacity equation is proposed for the parts that have contact pressure under concrete, vertical stress of hollow blocks, and the inner skin friction force from horizontal stress by confining effect based on the schematic diagram of confining effect inside a hollow modular concrete block. As a result of calculating the bearing capacity, the percentage of load distribution for contact force on the area of concrete is about 65%, vertical force on the area of hollow is 16.5% and inner skin friction force of area of the inner wall is about 18.5%. When the surcharge load is applied to the concrete part, the vertical stress occurs on the area of the hollow part by confining effect first. Then, in the filled sand in the hollow where the horizontal direction is constrained, the inner skin friction force occurs by the horizontal stress on the inner wall of the hollow modular concrete block. The inner skin friction force suppresses the punching of the concrete part and reduces contact pressure.