DOI QR코드

DOI QR Code

Compression Characteristics of Jeju Island Beach Sands

제주 해안지역 모래의 압축 특성

  • Nam, Jung-Man (Major of Civil & Environmental Engrg., Jeju National Univ.) ;
  • Cho, Sung-Hwan (Major of Civil & Environmental Engrg., Jeju National Univ.) ;
  • Kim, Tae-Hyung (Division of Civil & Environmental Engrg., Korea Maritime Univ.)
  • 남정만 (제주대학교 해양과학부 토목환경공학부) ;
  • 조성환 (제주대학교 해양과학부 토목환경공학부) ;
  • 김태형 (한국해양대학교 건설환경공학부)
  • Published : 2007.06.30

Abstract

Sands distributed in Jeju island's coastal areas, Korea, can be classified as silicate sand derived from volcanic rock, carbonate sand derived from shells, and mixed sands containing both silicate and carbonate sands. These three types of sands typically exist in Jeju coastal areas. Samples of silicate, carbonate and mixed sands were obtained from Samyang beach, Gimnyeong beach, and Jeju harbor area, respectively. Compression tests were conducted to assess the compression characteristics of these sands. As a result of these tests, each sand showed different behaviors. For Samyang beach sand, it appeared that initial compression is a larger than the other two sands. For Cimnyeong and Jeju harbor sands, however, the additional compression occurred after initial compression. This could result from the crushing, shattering, and rearrangement of sand particles. In addition, settlement behavior of Jeju harbor ground according to the construction stages was analyzed using the measured data. It showed that in addition to the initial elastic compression, a considerable additional compression occurred with time. The settlements of Jeju harbor ground were predicted by using the elastic settlement calculation methods (empirical methods) and the compression test method. The empirical methods, which did not consider the crushing, shattering, and rearrangement of particles could show smaller result than that occurring actually.

제주도 해안지역에 분포하고 있는 모래는 화산암류가 풍화되어 형성된 모래와 조개 등의 어패류가 풍화되어 탄산염 $(CaCO_3)$ 함유량이 많은 모래, 그리고 이들 두 가지 특징이 혼재한 모래로 분류할 수 있었다. 분류된 모래들 중 삼양, 김녕, 제주외항 지역의 모래에 압축 특성을 알고자 압축시험을 수행한 결과, 삼양인 경우 초기압축이 다른 모래에 비해 큰 것으로 나타났으며 김녕, 제주외항 모래인 경우 초기압축외의 추가적인 압축도 상당히 발생하였으며, 이는 압축시험 전·후의 모래의 입도분포 분석 결과 입자의 파쇄와 재배열에 의한 것으로 나타났다. 또한 현재 제주외항 항만시설 축조공사에 따른 지반의 침하특성을 분석한 결과 초기 압축 외에도 모래의 파쇄성과 재배열에 의해 상당시간동안 압축이 일어난 것을 알 수 있으며, 파쇄성과 재배열이 고려되지 않은 기존 탄성침하량 산정법을 이용한 침하량과 기존의 침하시간 산정 시 과소평가 될 우려가 있는 것으로 나타났다.

Keywords

References

  1. 국토연구원.제주발전연구원 (2006), 제주광역도시계획연구 중간보고서
  2. 김 명 (2001), '낙동강 하구 유역의 사질토층에 대한 침하특성 및 분석', 동아대학교 석사학위논문, pp.5-60
  3. 남정만 (2005), '제주도 화산쇄설물(송이)의 강도특성 및 다짐에 관한 연구' 대한토목학회할술발표회, 제주도
  4. 박기화, 제주발전연구원 (2003), '제주도 지질 여행', pp.15-137
  5. 원종관 (1975), '제주도의 형성과 화산활동에 관한 연구', 건국대학교 이학논총 제1집
  6. 윤종수 (1985), '제주 연안의 해빈퇴적물에 관한 연구', 광산지질학회지 제18권 제1호, pp.55-63
  7. 제주특별자치도 (2007), 21C 제주특별자치도 항만중장기개발 타당성 조사용역 초안
  8. 지옥미, 우경식 (1955), '제주도 해빈퇴적물의 구성성분', 한국해양학회지, 제 30권 제5호, pp.480-492
  9. 한국자원연구소(I998), '제주 애월도폭 지질보고서', 제주도.한국자원연구소, pp.21-23
  10. Berardi, R., Jamiolkowski, M. and Lancellotta, R. (1991), 'Settlement of shallow foundations in sands selection of stiffness on the basis of penetration resistance', Proc. of the Congress Sponsored by the Geotechnical Engineering Division of the ASCE, McLean, Campbell, and Harris, Eds., Vol.1, Geotechnical Special Publication, No.27, 185-200
  11. Bowles, J. E. (1977), 'Foundation Analysis and Design', 2nd ed., Mcgraw-Hill, New York
  12. Bowles, J. E. (1987), 'Elastic foundation settlements on sand deposits', ASCE, 113, No.8, pp.846-860
  13. Burland, J. and Burdidge, M. (1985), 'Settlement of foundations on sand and gravel', Proceedings of Institute of Civil Engineers, Part I, Vol.78, 1325-381
  14. DeBeer, E. E. (1965), 'Bearing capacity and settlement of shallow foundations on sand, Lecture No. 3, Proceedings of the Symposium on Bearing Capacity and Settlement of Foundations, Duke University, pp.15-33
  15. Al-Sanad, H. A, Ismael, N. F. and Brenner, R. P. (1993), 'Settlement of circular and ring plates in very dense calcareous sands, Journal of Geotechnical Engineering, Vol.119, No.4, April 1993, pp.622-638 https://doi.org/10.1061/(ASCE)0733-9410(1993)119:4(622)
  16. Holtz, R. D. (1991), Foundation Engineering Handbook, Ch.5, Stress distribution and settlement of shallow foundation, Van Nostrand Reinhold, New York, pp.166-223
  17. Holtz, R. D. and Kovacs, W. D. (1981), An Introduction to Geotechnical Engineering, Prentice-Hall, Inc., New Jersey
  18. Kraus, E. H. (1959), Mineralogy: an introduction to the study of minerals and crystals, McGraw-Hill, New York
  19. Lee, J. and Salgado, R. (2002). 'The estimation of the settlement of footings in sand.' International Journal of Geomechanics, 1(2), pp.175-192
  20. Lee, K. L. and Seed, H. B. (1967), 'Drained strength characteristics of sands', Journal of the soil mechanics and foundations division, American Society of Civil Engineers, pp.118-141
  21. Leonards, G. A. and Frost, J. D. (1988), 'Settlement of shallow foundations on granular soils', Journal of Geotechnical Engineering, ASCE, Vol.117, No.7, pp.791-809
  22. Meyerhof, G. G. (1974), 'Ultimate Bearing Capacity of Footings on Sand Layer Overlying Clay', Canadian Geotechnical Journal Vol.11, No.2. pp.224-229
  23. Oweis, I. S. (1979), 'Equivalent linear model for predicting settlement of sand bases', Journal of the Geotechnical Engineering Division, ASCE, 105, No. GT12, pp.1525-1544
  24. Schmertmann, J. H. (1970), 'Static Cone to Compute Settlement Over Sand', Journal of the Soil Mechanics and Foundations Division. American Society of Civil Engineers, Vol.96. No.SM3. pp.1011-1043
  25. Schmertmann, J. H., Hartman, J. P. and Brown, P. R. (1978), 'Improved Strain Influence Factor Diagrams', Journal of the Geotechnical Engineering Division. American Society of Civil Engineers, Vol.104. No.8. pp.1131-1135
  26. Sinkankas, J. (1966), Mineralogy, Princeton, NJ
  27. Webb, D. L. (1969), 'Settlement of Structure on Deep Alluvial Sandy Sediments in Durban', South Africa, Proc. Conf. In-Situ Behav. Soil Rock. Inst, Civil Eng., London, pp.181-188