• 제목/요약/키워드: Crushed

검색결과 1,093건 처리시간 0.024초

생산 방식에 따른 부순 모래의 특성 및 모르타르 적용성 (Properties of Quality & Mortar Application of Crushed Sand According to the Producing Type)

  • 백철우;박조범;김정식;류득현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.443-446
    • /
    • 2005
  • Recently, according to increase use of concrete which is the main material of construction, the natural aggregate of good quality is more and more decreased. Most of all, among the concrete materials, the development of alternation materials of sand is urgently needed. In this study, investigating the production equipment and the sample of crushed sand company and analyzing properties of sand, manufactured mortar by the KS to use crushed sand as the fine aggregate of concrete material. The experiment result is as follows. 1. The density, an absorptivity, and the amount of 0.08mm passage ratio of crushed sand, and the mortar used crushed sand satisfied KS. The mechanical results is similar to sea sand. 2. The crushed sand which used impact crusher instead of cone crusher for 3rd or 4th crusher was similar properties to sea sand, so it is judged that impact crusher has high effect of particle shape improvement of crushed sand.

  • PDF

부순모래를 사용한 고강도콘크리트의 유동성 및 강도특성에 관한 연구 (The Study on Fluidity and Strength Properties of High Strength Concrete Utilizing Crushed Sand)

  • 신홍철;박상준;안남식;이의학;강훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.383-386
    • /
    • 2005
  • This paper is to investigate the effect of W/B, blend ratio of crushed sand with sea sand on fluidity and strength properties of high strength concrete utilizing crushed sand. W/B set up 0.25, 0.30, 0.35 and the blend ratio of crushed sand with sea sand set up 0:100, 30:70, 50:50, 70:30, 100:0 The results of this study are summarized as the follows; 1) The increase of the blend rate of crushed sand, affected on the enhancement of flow, the increase of dosage of SP and water content, but the decrease S/a 2) Compressive strength is increased when crushed sand $30\~70\%$ was replaced with sea sand. 3) The optimal replacement percentage of crushed sand is $50\%$ with sea sand.

  • PDF

부순모래를 사용한 콘크리트의 물성에 관한 연구 (A Study on the Material Properties of Concrete Using Crushed Sand)

  • 윤용호;정용욱;이승한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.106-111
    • /
    • 2003
  • This paper is to investigate the characteristics of a concrete in which river sand is partially substituted with crushed sand. Since river sand has a relatively small fineness modulus, there is a need to increase the fineness modulus of sand used in the manufacture of concrete. In an experiment, it was observed that when river sand had a fineness modulus of 2.0~2.4 and crushed sand had a fineness modulus of 2.8~3.5, the substitution rate of the crushed sand was preferably within the range of 25~50%. The experimental results also revealed that as the substitution rate of the crushed sand increased, the flowability of the concrete tended to increase. However, when the substitution rate of the crushed sand reached 75% or more, the workability of the concrete was considerably poor. Further, as the substitution rate of the crushed sand increased, the air content and the bleeding rate of the concrete were low.

  • PDF

패분 콘크리트의비파괴 특성에 관한 실험적 연구 (An Experimental Study on Nondestructive Properties of Crushed Oyster Shell Concrete)

  • 성찬용
    • 한국농공학회지
    • /
    • 제42권2호
    • /
    • pp.93-98
    • /
    • 2000
  • This study is performed to evalute experimentally the nondestructive properties on the concrete that is treated with crushed oyster shell powder of 0.15m or smaller in diameter. The ultrsonic pulse velocity of crushed oyster shell concrete(COSC) is in the range of 4.110-4.267m/s, and the dynamic modulus of elasticity of COSC range from 288$\times$10$^3$ to 318 $\times$10$^3$kgf/$\textrm{cm}^2$. The ultrasonic pulse velocity and dynamic modulus of elasticity are similar to those of normal portland cement concrete. The highest ultrasonic pulse velocity and dynamic modulus of COSC are measured at the 2.5% addition rate by weight of crushed oyster shell powder. The acid-resistance in increased of the content of crushed oyster shell powder. The acid-resistance of COSC with 15% addition rate by weight of crushed oyster shell power is 1.6 times greater than that of normal portland cement concrete. It is concluded that the addition of crushed oyster shell powder to normal portland cement concrete contributed to improve the nondestructive properties of concrete.

  • PDF

쇄석 골재의 광물학적 특성 및 알칼리-골재 반응성 (The Petrographic Properties and Alkali-Aggregate Reaction of Crushed Stones)

  • 전쌍순;박현재;이효민;황진연;진치섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.249-254
    • /
    • 2002
  • In Korea, due to the shortcomings of natural aggregates and increasing needs of crushed stones, it is necessary to examine the alkali-aggregate reaction of the crushed stones. The purpose of this study is to analyze petrographic properties and alkali-aggregate reaction of crushed stones This study was peformed to investigate the alkali-aggregate reaction of crushed stones using chemical analysis, physical properties, XRD, XRF and mortar-bar method.

  • PDF

부순모래의 입형 및 미립분 함유량 개선을 위한 기술 검토 (An Investigation for Improvement of Grain Shape and Very Fine Sand of Crushed Sand)

  • 김기훈;윤섭;이용성;윤기원;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2004년도 학술.기술논문발표회
    • /
    • pp.71-74
    • /
    • 2004
  • Recently, with the wide shortage of natural sand resources, it has been increasingly used the crushed sand. rushed sand is made by the process of crushing the rocks artificially, which has different particle properties compared with that of natural sand. Because such different panicle properties of crushed sand results in an undesirable effects of concrete. improvement technology for crushed sand particle properties like grain shape and fine particle needed during the manufacturing process. In this paper, improvement technology of grain shape and fine particle is reported. According to test results, adequate investment for manufacturing facilities like impact crusher and abrasion test machine is required to meet the advanced grain shape and grading of crushed sand. Based on the investigation of test result, mixing of natural land and crushed sand with given proportion can achieve the improvement of grain shape. For improving excessive fine panicle contents. current manufacturing system also can enhance the existing technology for fine particle without additional investment. It can be concluded that adequate investment and research can improve the quality of crushed sand.

  • PDF

Rheological, Mechanical and Structural Performances of Crushed Limestone Sand Concrete

  • Akrout, Khaoula;Mounanga, Pierre;Ltifi, Mounir;Jamaa, Nejib Ben
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권2호
    • /
    • pp.97-104
    • /
    • 2010
  • The crushed limestone sand is an abundant material in Tunisia, which induces many environmental problems. Indeed, available stocks of siliceous sand drastically decrease because of its massive use in hydraulic concrete. Some recent research works, carried out in Tunisia, concluded that crushed limestone sand may be used in concrete manufacture instead of siliceous sand traditionally used. In this context, an experimental study was achieved in order to quantify the influence of a partial or total substitution of siliceous sand by crushed limestone sand on hydraulic concrete performances. Preliminary chemical and physical tests on crushed sand indicated that it presented the minimum requirement for its use as aggregate in hydraulic concrete. 79 concretes were then prepared with siliceous sand, crushed limestone sand and a mix of the two sands. Their slump value and compressive strengths were measured on plain concretes. Complementary structural tests on reinforced concrete beam were also performed. The results proved that crushed limestone sand concretes showed workability and mechanical performances closed to those of siliceous sand concretes.

패화석, 맥반석 및 바이오세라믹의 혼입처리 벼의 생육에 미치는 영향 (Effects of Substrates Supplemented with Crushed Shell, Elvanite and bioceramic on the Growth of Rice(Oryza sativa L.))

  • 박순기;김홍기;정순주
    • 한국유기농업학회지
    • /
    • 제6권1호
    • /
    • pp.127-132
    • /
    • 1997
  • This experiment was carried out to examine the effect of various functional materials such as bioceramic podwers, crushed shells and elvanites supplemented to the each substrate on the seedlings growth of rices. The rice seedlings were grown in pots filled with substrates supplemented with bioceramic podwers, crushed shells and elvanites. The growth of rice seedlings in terms of plant height, stem diameter, root length and leaf width, plant fresh and dry weight was promoted by adding the bioceramic powders (2 to 3g/kg), crushed shells (10g/kg) or elvanites (20 to 40g/kg). Plant height was also promoted by the adding of bioceramic powder from 16 days after treatment, whereas crushed shells and elvanites from 10 days after treatment. Especially, root growth was greatly influenced by bioceramic powder, whereas the shoot growth(leaves and stem) was stimulated by the crushed shells and elvanites supplemented into each substrate. In the field, plant growth in terms of plant height, leaf length and leaf width were also influenced by crushed shells and elvanites at 74 days after treatment. The growth of rices in terms of tiller number, spikelets, panicles and spikelets/panicle was incresed by adding the crushed shells and elvanites from 100 to 200g per m2.

  • PDF

부순모래 대체율에 따른 콘크리트의 공학적 특성 및 내구성에 관한 실험적 연구 (An Experimental Study on the Engineering Property and Durability of Concrete With Replacement Ratio of Crushed Sand)

  • 박종호;이동혁;나철성;김재환;김규용;김무한
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 추계 학술논문 발표대회
    • /
    • pp.63-66
    • /
    • 2005
  • Recently, Trouble of sand supply is occurred according to exhaustion of natural sand resources. therefore, various measures are proposed for solution of trouble of sand supply also the government settled trouble of sand supply through application of crushed sand. but because both crushed sand are poor against general sand, they lead to lowering of qualify of ready-mixed concrete. Therefore, this study evaluated engineering property and durability of concrete using crushed sand and applied evaluation result to fundamental data for quality control of concrete using crushed sand. The results of this study have shown that quality of concrete using crushed sand independently is poor against general concrete. but, the workability, compressive strength and durability of concrete mixed crushed sand with genera can improve on those of concrete used general sand.

  • PDF

Effect of crushed waste glass as partial replacement of natural fine aggregate on performance of high strength cement concrete

  • Ajmal, Paktiawal;Mehtab, Alam
    • Advances in materials Research
    • /
    • 제11권4호
    • /
    • pp.251-277
    • /
    • 2022
  • Disposal of industrial waste in cities where municipal authorities permitting higher floor area ratio coupled with increasing living standards, a lot of demolition waste is being generated. Its disposal is a challenge particularly in megacities where no landfills are available. The ever-increasing cost of building construction materials also necessitates consuming demolition wastes in a useful manner to save fresh natural raw materials. In the present work, the crushed waste glass is used in high-strength concrete as a partial replacement of fine aggregate. The control concrete of grade M60 was proportioned following BIS 10262-2009. The crushed waste glass has been used as a partial replacement with varying percentages of 10, 20, 30, and 40% by weight of fine aggregate. Experimental tests were carried on the fresh and hardened state of the concrete. The effect of crushed waste glass on the workability of the concrete has been investigated. Non-destructive tests, acid attack tests, compressive strength, split tensile strength, and X-ray diffraction analysis was carried out for the control concrete and concrete containing crushed waste glass after 7, 28, and 270 days of normal curing. The results show that for the same w/c ratio, the workability of concrete increases with increasing replaced crushed waste glass content. However, the decrease in compressive strength of the concrete after 28 days of normal curing and further after 28 days of acid attacks, up to 30% replacement level of fine aggregate by the crushed waste glass is insignificant.