• 제목/요약/키워드: Crush Behavior

검색결과 25건 처리시간 0.02초

소성 힌지를 갖는 단순 보 모델을 이용한 루프 붕괴 해석 기술 (Roof Crush Analysis Technique Using Simple Model with Plastic Hinge Concepts)

  • 강성종
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.216-222
    • /
    • 1996
  • This paper presents a computational technique to predict roof crush resistance in early design stage of passenger car development. This technique use a simple F.E. model with nonlinear spring elements which represent plastic hinge behavior at weak areas. By assuming actual sections as equivalent simple sections, maximum bending moments which weak areas in major members can stand are theoretically calculated. Results from prediction of roof crush resistance are correlated well with test results.

  • PDF

유한요소법에 의한 사각형 튜브의 충돌에너지 흡수거동 II (The energy absorption behavior of square tube by F.E.M)

  • 강대민;윤명균;황종관
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.181-188
    • /
    • 2000
  • This paper describes the energy absorption of a square tube under axi compression by using the finite element method. The overall deformations and lo buckling modes of tube was discussed by "plastic hinge concep Force-displacement function was plotted to show various state that depended or time. Also, mean crush load was expressed as a type of section geometry a material property using dimensional analysis. To verify the energy absorption and the effects of dimensions, The standards Wt used as related density and specific energy, mean crushing load and the resL were discussed by the relation between crush load and deformation, the relati between related density and specific energy, the relation between crush load a mean crush load, the relation between mean crush load and specific energy.ergy.

  • PDF

Effects of Low Power Laser on Pain Response and Axonal Regeneration in Rat Models with Sciatic Nerve Crush Injury

  • Lee, Hong-Gyun;Kim, Yong-Eok;Min, Kyung-Ok;Yoo, Young-Dae;Kim, Kyung-Yoon;Kim, Gye-Yeop
    • 국제물리치료학회지
    • /
    • 제3권1호
    • /
    • pp.345-355
    • /
    • 2012
  • This study purposed to examine the effect of low power laser on pain response and axonal regeneration. In order to prepare peripheral nerve injury models, we crushed the sciatic nerve of Sprague-Dawley rats and treated them with low power laser for 21 days. The rats were divided into 4 groups: normal group(n=10); control group(n=10) without any treatment after the induction of sciatic nerve crush injury; experimental group I(n=10) treated with low power laser(0.21$mJ/mm^2$) after the induction of sciatic nerve crush injury; and experimental group II(n=10) treated with low power laser(5.25$mJ/mm^2$) after the induction of sciatic nerve crush injury. We measured spontaneous pain behavior(paw withdrawal latency test) and mechanical allodynia(von Frey filament test) for evaluating pain behavioral response, and measured the sciatic function index for evaluating the functional recovery of peripheral nerve before the induction of sciatic nerve crush injury and on day 1, 7, 14 and 21 after the induction. After the experiment was completed, changes in the H & E stain and toluidine blue stain were examined histopathologically, and changes in MAG(myelin associated glycoprotein) and c-fos were examined immunohistologically. According to the results of this study, when low power laser was applied to rat models with sciatic nerve crush injury for 21 days and the results were examined through pain behavior evaluation and neurobehavioral, histopathological and immunohistological analyses, low power laser was found to affect pain response and axonal regeneration in both experimental group I and experimental group II. Moreover, the effect on pain response and axonal regeneration was more positive in experimental group I to which output 0.21$mJ/mm^2$ was applied than in experimental group II to which 5.25$mJ/mm^2$ was applied.

CRUSH BEHAVIOR OF METALLIC FOAMS FOR PASSENGER CAR DESIGN

  • Cheon, S.S.;Meguid, S.A.
    • International Journal of Automotive Technology
    • /
    • 제5권1호
    • /
    • pp.47-53
    • /
    • 2004
  • In this paper, a modified and representative unit cell model was employed to study the crush behaviour of a closed cell metallic foam. The unit cell which captures the main geometrical features of the metallic foam considered was used to simulate crush behaviour in metallic foams. Both analytical using limit analysis and numerical using the finite element method were used to study the collapse behaviour of the cell. The analytical crushing stress of the foam was compared with FE results and was found to be in good agreement.

NUMERICAL SIMULATION OF CONVEX AND CONCAVE TUBES WITH CONSIDERATION OF STRAIN RATE SENSITIVITY

  • Ye, B.W.;Oh, S.;Cho, Y.B.;Sin, H.C.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.193-201
    • /
    • 2007
  • The present paper deals with the application of the explicit finite element code, PAM-CRASH, to simulate the crash behavior of steel thin-walled tubes with various cross-sections subjected to axial loading. An isotropic elastic, linear strain-hardening material model was used in the finite element analysis and the strain-rate sensitivity of mild steel was modeled by using the Cowper-Symonds constitutive equation with modified coefficients. The modified coefficients were applied in numerical collapse simulations of 11 types of thin-walled polygon tubes: 7 convex polygon tubes and 4 concave polygon tubes. The results show that the thin hexagonal tube and the thick octagonal tube showed relatively good performance within the convex polygon tubes. The crush strengths of the hexagonal and octagonal tubes increased by about 20% and 25% from the crush strength of the square tube, respectively. Among the concave tubes, the I-type tube showed the best performance. Its crush strength was about 50% higher than the crush strength of the square tube.

차체의 압괴특성에 의한 충돌 후 타고오름 거동에 관한 연구 (Study on a Override Behavior during Train Collision by Crush Characteristic of Train Carbody)

  • 김거영;구정서;박민영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.604-608
    • /
    • 2010
  • This paper proposed a new 2D multibody dynamic modeling technique to analyze overriding behavior taking place during train collision. This dynamic model is composed of nonlinear spring, damper and mass by considering the deformable characteristics of carbodies as well as energy absorbing structures and components. By solving this dynamic model of rollingstock, collision energy absorption capacity, acceleration of passenger sections, impact forces applied to interconnecting devices, and overriding displacements can be well estimated. For a case study, we choose KHST (Korean High Speed Train), obtained crush characteristic data of each carbody section from 3D finite element analysis, and established a 2D multibody dynamic model. This 2D dynamic model was suggested to describe the collision behavior of 3D Virtual Testing Model.

  • PDF

박판 4각튜브의 반실험적 압괴메카니즘 해석 (Semi Empirical Analysis on the Crushing Mechanism of Thin-Walled Rectangular Tubes)

  • 김천욱;한병기;임채홍
    • 대한기계학회논문집A
    • /
    • 제21권1호
    • /
    • pp.12-21
    • /
    • 1997
  • A model for analysis of the crushing mechanism of thin-walled rectangular tube is presented. The crushing modes of rectangular tubes may be characterized as either compact or noncompact and the model presented only considers compact modes. The unloading process in the crushing are categorized into three different stages where the distinction is based on the ratio of outward to inward fold length. Using the kinematic relations and the energy conservation principle, the instantaneous crush load is derived. An approximate equation that considers the rolling behavior is also given so that the crush load history may be established. The equation is experimentally proved.

크러시스위치 조립체의 작동신뢰성 확인을 위한 M&S와 시험 결과 비교 (M&S and Experimental Comparison of Crush Switch Assembly for Operation Validation)

  • 김민겸;정명숙;엄원영;장준용
    • 한국군사과학기술학회지
    • /
    • 제23권3호
    • /
    • pp.229-236
    • /
    • 2020
  • A crush switch assembly(CSA) connected to an impact fuze provides electrical signal for detonation of the loaded main charge when an impact with the target is detected. Because the CSA experiences continuous changes in flight environment such as changes in velocity, vibration, and stresses, it is necessary to accurately predict the behavior of the fuze to maintain functionality during flight and to detonate when necessary. In this paper, random vibration analysis for flight environment and impact analysis on target hit are performed using FEA. Then, high speed impact tests are performed with the original and scaled down models to ensure operation validation of the manufactured products. The test results are then compared with M&S results to verify the capability of currently modeled CSA.

정사각 모자형 박판튜브의 에너지흡수특성 및 최적 용접간격 (Energy Absorption Characteristics and Optimal Welding Space of Square Hat Type Thin-walled Tube)

  • 이형일;김범준;한병기
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2703-2714
    • /
    • 2002
  • 본 연구에서는 유한요소해석을 통해 점용접된 정사각 모자형 박판튜브의 적정 용접간격을 제시해보았다. 적정 용접간격은 에너지흡수 측면에 기준을 두었다. 이를 위해 먼저, 실제 압괴특성을 반영하는 유한요소 모델이 확립하였다. 실제 압괴 특성을 반영하는 유한요소 모델은 본 연구에서 수행된 실험결과에 기초하여 설정하였다. 이 과정에서 다음과 같은 결과들을 도출하였다. (1) 모자형 박판튜브의 압괴해석시 원활한 접힘을 유도하고 과도변형과 접촉에 의한 수치오류 및 비정상 압괴거동을 방지하기 위해 적정 요소크기와 해석시간에 대한 예비연구가 필요하다. (2) 다양한 용접간격의 유한요소모델들에 대한 압괴해석을 거쳐 주어진 폭에 대해 최대 에너지 흡수 용접간격 [식 (1)]을 제시하였다. 또한 최적용접 간격의 모자형 박판튜브는 후폭비 (t/w)가 커질수록 에너지흡수능력 이 증가한다. (3) 다양한 두께와 폭을 갖는 사각튜브에 대한 유한요소해석을 통해, 사각튜브 흡수에너지 예측에 있어 평균압괴하중 방법의 유효성을 검증하였다. 이를 토대로 후폭비항으로 표현되는 수정된 평균 압괴하중으로 최적용접간격을 갖는 모자형 박판튜브의 흡수에너지식 (5)를 제시하였다. 식 (5)의 적용시, 주어진 폭에 대해 (최적)용접간격을 유지함과 동시에 식 (6)의 한계후폭비를 만족해야 한다.

Benefits of the S/F Cask Impact Limiter Weldment Imperfection

  • Ku, Jeong-Hoe;Lee, Ju-Chan;Kim, Jong-Hun;Park, Seong-Won;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.191-203
    • /
    • 2000
  • This paper describes the beneficial effect of weldment imperfection of the cask impact limiter, by applying intermittent-weld, for impact energy absorbing behavior. From the point of view of energy absorbing efficiency of an energy absorber, it is desirable to reduce the crush load resistance and increase the deformation of the energy absorber within certain limit. This paper presents the test results of intermittent-weldment and the analysis results of cask impacts and the discussions of the improvement of impact mitigating effect by the imperfect-weldment. The rupture of imperfect weldment of an impact limiter improves the energy-absorbing efficiency by reducing the crush load amplitude without loss of total energy absorption. The beneficial effect of weldment imperfection should be considered to the cask impact limiter design.

  • PDF