• 제목/요약/키워드: Cruciform specimen

검색결과 22건 처리시간 0.028초

Influence of Biaxial Loads on Impact Fracture of High-Strength Membrane Materials

  • Kumazawa, Hisashi;Susuki, Ippei;Hasegawa, Osamu;Kasano, Hideaki
    • Advanced Composite Materials
    • /
    • 제18권4호
    • /
    • pp.395-413
    • /
    • 2009
  • Impact tests on high-strength membrane materials under biaxial loads were experimentally conducted in order to evaluate influence of biaxial loads on impact fracture of the membrane materials for the inflated applications. Cruciform specimens of the membrane materials were fabricated for applying biaxial loadings during the impact test. A steel ball was shot using a compressed nitrogen gas gun, and struck the membrane specimen. Impact tests on uniaxial strip specimens were also conducted to obtain the effect of specimen configuration and boundary condition on the impact fracture. The results of the measured crack length and the ultra-high speed photographs indicate the impact fracture properties of the membrane fabrics under biaxial loadings. Crack length due to the impact increased with applied tensile load, and the impact damages of the cruciform membrane materials under biaxial loadings were smaller than those of under uniaxial loadings. Impact fracture of the strip specimen was more severe than that of the cruciform specimen due to the difference of boundary conditions.

이축하중을 받는 십자형 시편의 파괴인성 및 구속효과 평가 (Evaluation of Fracture Toughness and Constraint Effect of Cruciform Specimen under Biaxial Loading)

  • 김종민;김민철;이봉상
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.62-69
    • /
    • 2016
  • Current guidance considers that uniaxially loaded specimen with a deep crack is used for the determination of the ductile-to-brittle transition temperature. However, reactor pressure vessel is under biaxial loading in real and the existence of deep crack is not probable through periodic in-service-inspection. The elastic stress intensity factor and the elastic-plastic J-integral which were used for crack-tip stress field and fracture mechanics assessment parameters. The difference of the loading condition and crack geometry can significantly influence on these parameters. Thus, a constraint effect caused by differences between standard specimens and a real structure can over/underestimate the fracture toughness, and it affects the results of the structural integrity assessment, consequentially. The present paper investigates the constraint effects by evaluating the master curve $T_0$ reference temperature of PCVN (Pre-cracked Charpy V-Notch) and small scale cruciform specimens which was designed to simulate biaxial loading condition with shallow crack through the fracture toughness tests and 3-dimensional elastic-plastic finite element analyses. Based on the finite element analysis results, the fracture toughness values of a small scale cruciform specimen were estimated, and the geometry-dependent factors of the cruciform specimen considered in the present study were determined. Finally, the transferability of the test results of these specimens was discussed.

하중전달 십자형 필렛 용접부의 피로강도 평가에 관한 연구 (A Study on the Fatigue Strength Evaluation of Load-Carrying Fillet welded Cruciform Joints)

  • 이용복;남병찬;박인규;정진성;김호경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.200-205
    • /
    • 2000
  • Fatigue failure modes of load-carrying cruciform weld joints are dependent on the characteristics of the fatigue crack initiation and propagation from the weld toe or the weld root. In this study, constant amplitude fatigue tests on load-carrying fillet welded specimen carried out, and fatigue strengths were evaluated. Also, an attempt is made to develop a new analytical model with more accuracy to predict the fatigue crack propagation life of fillet welded cruciform joints of SWS 490B steels containing lack of penetration defects. From the result of this study, fatigue crack growth characteristics of load-carrying fillet welded cruciform joints, containing lack of penetration defects are found to be affected by the weld geometry, stress range and microstructures of the weld zone.

  • PDF

용접방법에 따른 하중전달 십자형 필렛 용접부의 피로특성 (Fatigue Characteristics of Load-Carrying-Cruciform-Fillet-Welded-Joints According to Welding Methods)

  • 이용복;오병덕
    • 한국공작기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, endurance limit and fatigue behavior of load carrying fillet welded cruciform joints depending on commonly used welding methods such as SMAW, SAW, MIG and FCAW are investigated. In respect of endurance limit SMAW specimen showes highest result, and then MIG, SAW, FCAW in descending order. However, SMAW specimen showes lowest crack growth rate and it followed by MIG, FCAW, SAW. By these results, it is needed to use SMAW or MIG welding methods for welding structures with small welding capacity and SAW or FCAW methods for large welding structures with respect to economic benefits and operation efficiency of welding. It was also shown fatigue crack growth rate was more influenced by the strenght of welding materials than the endurance limit of welding materials.

Hot-Spot 응력을 이용한 하중전달형 십자형 필렛 용접재의 피로강도 평가 (Fatigue Strength of the Load-Carrying Cruciform Fillet Welded Joints Using the Hot-Spot Stress)

  • 박종민;최원식;권순홍;노병욱
    • 한국기계가공학회지
    • /
    • 제6권1호
    • /
    • pp.20-26
    • /
    • 2007
  • In this study, fatigue strength of load-carrying cruciform fillet welded joints were evaluated using a new method proposed by Yamada, for geometric or structural stress in welded joint, that is, one-millimeter stress below the surface in the direction corresponding to the expected crack path. Validity of the method is verified by analyzing fatigue test results for load-carrying cruciform welded specimens has different size of weld toe radius, leg length and plate thickness reported in literature. Structural stress concentration factor for 1mm below the surface was calculated by finite element analysis for each specimen respectively. When compared to the basic fatigue resistance curve offered by BS7608, the one-millimeter stress method shows conservative evaluation for load-carrying cruciform fillet welded joints.

  • PDF

Very long life fatigue behaviors of 16Mn steel and welded joint

  • Liu, Yongjie;He, Chao;Huang, Chongxiang;Khan, Muhammad K.;Wang, Qingyuan
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.889-901
    • /
    • 2014
  • Very long life fatigue tests were carried out on 16Mn steel base metal and its welded joint by using the ultrasonic fatigue testing technique. Specimen shapes (round and plate) were considered for both the base metal and welded joint. The results show that the specimens present different S-N curve characteristics in the region of $10^5-10^9$ cycles. The round specimens showed continuously decreasing tendency while plate specimens showed a steep decreasing step and an asymptotic horizontal one. The fatigue strength of round specimen was found higher than plate specimen. The fatigue strength of as-welded joint was 45.0% of the base material for butt joint and 40% for cruciform as-welded joint. It was found that fracture can still occur in butt joint beyond $5{\times}10^6$ cycles. The cruciform joint has a fatigue limit in the very long life fatigue regime ($10^7-10^9$ cycles). Fatigue strength of butt as-welded joint was much higher as compared to cruciform as-welded joint. Improvement in fatigue strength of welded joint was found due to UPT. The observation of fracture surface showed crack mainly initiated from welded toe at fusion areas or geometric discontinuity sites at the surface in butt joint and from welded toe in cruciform joint.

응력비 변화에 따른 십자형 접합부의 피로거동 평가 (An Estimation of the Fatigue Behavior on the Cruciform Type Specimen by Variation of the Stress Ratio)

  • 김태봉;서상구;우상익
    • 한국안전학회지
    • /
    • 제15권1호
    • /
    • pp.140-145
    • /
    • 2000
  • 강교량 부재인 십자연결형 접착부를 하중비전달형과 하중전달형으로 각각 제작하여 피로 강도 저감 정도와 응력비 변화에 따른 피로거동을 평가하였다. 또한, 필렛용접 비드의 기하학적 형상에 따른 응력집중을 확인하기 위하여 전산해석을 수행하였다. 피로실험 결과 시험편의 응력비가 피로 강도에 미치는 영향은 거의 없는 것으로 나타났으며, 하중전달형 시험편과 대부분의 밀착 시험편은 용접지단부에서 균열이 발생하여 모재가 파단됨을 알 수 있었다. 모재가 파단된 십자형 시험편의 피로강도는 ${\Delta}\sigma_c$=63.5 MPa로 하중 비전달형 시험편의 피로강도 ${\Delta}\sigma_c$=83.8 MPa보다 약 24% 작게 나타났다. 본 연구대상 시험편은 도로교 시방서상에 모재단면에 대한 응력으로 피로범주 C등급으로 규정하고 있으므로, 실험결과를 모재단면에 대한 응력으로 피로강도를 환산하면 78.27 MPa로 허용 피로강도보다 작은 것으로 나타났다.

  • PDF

십자형 필렛용접 이음부의 복수균열 진전수명 평가 (Fatigue Life Estimation of Cruciform Welded Joint Considering Multiple Collinear Surface Cracks)

  • 한승호;신병천;김재훈;한정우
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1549-1557
    • /
    • 2004
  • Fatigue life of welded joints is governed by the propagation of multiple collinear surface cracks distributed randomly along weld toe. These cracks propagate under the mechanisms of mutual interaction and coalescence of the adjacent two cracks. To estimate the fatigue life, its influences on the above two mechanisms should be taken into account, which appear through the stress intensity factors disturbed mutually. However, it is difficult to calculate the stress intensity factors of the multiple surface cracks located in vicinity of weld toe due to its geometrical complexity. They are calculated normally by using the Μk-factors, but such Mk-factors are very rare in literature. In this study, the Μ$textsc{k}$-factors were obtained from a parametric study on crack length and depth, for which a finite element method is used. A fatigue test for a cruciform welded Joint was conducted and the fatigue life of the tested specimen was estimated using the present method with the informations obtained from the test, such as the number, size, and locations of the cracks. The estimated and measured fatigue life showed a good agreement.

다균열 간섭, 합체, 성장이론을 고려한 십자형 필렛용접 이음부의 피로균열진전수명 평가 (Fatigue Life Estimation of Cruciform Welded Joint Considering Interaction, Coalescence and Growth of Multi-crack)

  • 한정우;한승호;신병천;임전;김재훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.120-125
    • /
    • 2004
  • Fatigue life of welded joints are governed by the propagation of multiple collinear surface cracks distributed randomly along weld bead. These cracks propagate in mutual interaction and coalescence of them. To estimate the fatigue life, the influences of above two mechanisms on the fatigue life should be taken into account. These two mechanisms appear through the stress intensity factors disturbed mutually. However, it is difficult to calculate the stress intensity factors of multiple surface cracks located in vicinity of weld toe. The stress intensity factors are calculated normally by using the Mk-factors, but such Mk-factors are very rare in literature. In this study, the Mk-factors were obtained from a parametric study on crack length and depth, in which a finite element method is used. A fatigue test for a cruciform welded joint was conducted. The fatigue life of the tested specimen was estimated through present method with the informations obtained from the test, e.g. the number, size and locations of the cracks. The estimated and measured fatigue life showed a good agreement.

  • PDF

철강 재료의 2축 비등방향 잔류응력 평가를 위한 연속압입시험의 최적조건 선정 (Optimum Selection of the Advanced Indentation Technique for the Evaluation of Non-equip-biaxial Residual Stress in Steel Materials)

  • 유승종;김주현;박주승;권동일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1774-1779
    • /
    • 2005
  • Most of materials receive force in using, therefore, the characteristics of materials must be considered in system design not to occur deformation or destruction. Mechanical properties about materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties is strength, hardness, ductility and stiffness etc. Currently, among major measure facilities to measure such mechanical properties, advanced indentation technique has focused in industrial areas as reason of nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to give non-equi-biaxial stress state and compared with general residual stress analyzing method for verification.

  • PDF