• Title/Summary/Keyword: Crucible Materials

Search Result 119, Processing Time 0.032 seconds

Cold Crucible Electromagnetic Casting of Silicon (Cold crucible을 이용한 실리콘의 전자기주조)

  • Shin, Je-Sik;Lee, Sang-Mok;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.3
    • /
    • pp.115-122
    • /
    • 2005
  • In the present study, an EMC (Electromagnetic Casting) process, using a segmented Cu cold crucible under a high frequency alternating magnetic field of 20 kHz, was practiced for the fabrication of poly-crystalline Si ingot of 50 mm diameter. The effects of Joule heating and electromagnetic pressure in molten Si were systematically investigated with various processing parameters such as electric current and crucible configuration. A preliminary experimental work was initiated with the pure Al system for the establishment of a stabilized non-contact working condition, and further adapted to the semiconductor-off-grade Si system. A commercialized software such as Opera-3D was utilized in order to simulate electromagnetic pressure and Joule heating. In order to evaluate the meniscus shape of the molten melts, shape parameter was used throughout the research. A segmented graphite crucible, which was attached at the upper part of the cold crucible, was introduced to enhance significantly the heating efficiency of Si melt keeping non-contact condition during continuous melting and casting processes.

Fracture Behavior of Fe Crucible in Molten Aluminum Coated with Al and Anodized Al (수명을 향상시키기 위해 Al 메탈 코팅과 양극산화처리된 Steel 도가니의 파괴 거동)

  • Cha, Taemin;Shin, Byung-Hyun;Hwang, Myungwon;Kim, Do-Hyung;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.34-39
    • /
    • 2018
  • Steel crucible used for molten Al has a problem of very limited lifetime because of the interaction between Fe and molten Al. This study was performed to improve the lifetime of steel crucible for molten Al by coating metallic Al and by further anodizing treatment to form thick and uniform anodic oxide films. The lifetime of the steel crucible was improved slightly by Al coating from 30 to 40 hours by metallic Al coating and largely to 120 hours by coating the surface with anodic oxide film. The improved lifetime was attributed to blocking of the reaction between Fe and molten Al with the help of anodic oxide layer with more than 20 um thickness on the crucible surface. The failure of the steel crucible arises from the formation of intermetallic compounds and pores at the steel/Al interface.

Evaporation Characteristics of Materials from an Electron Beam Evaporation Source (전자빔 증발원을 이용한 물질의 증발 특성)

  • Jeong, J.I.;Yang, J.H.;Park, H.S.;Jung, J.H.;Song, M.A.
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.4
    • /
    • pp.155-164
    • /
    • 2011
  • Electron beam evaporation source is widely used to prepare thin films by physical vapor deposition because it is very effective to vaporize materials and there is virtually no limit to vaporize materials including metals and compounds such as oxide. In this study, evaporation characteristics of various metals and compounds from an electron beam evaporation source have been studied. The 180 degree deflection type electron beam evaporation source which has 6-hearth crucibles and is capable of inputting power up to 10 kW was employed for evaporation experiment. 36 materials including metals, oxides and fluorides have been tested and described in terms of optimum crucible liner, evaporation state, stability, and so on. Various crucible liners have been tried to find out the most effective way to vaporize materials. Two types of crucible liners have been employed in this experiment. One is contact type liner, and the other is non-contact type one. It has been tried to give the objective information and the most effective evaporation method on the evaporation of materials from the electron beam evaporation source. It is concluded that the electron beam evaporation source can be used to prepare good quality films by choosing the appropriate crucible liner.

Manganese Zinc Ferrite Singel Crystal Growth by Continuous Crystal Growing Method (연속성장법에 의한 Mn-Zn Ferrite 단결정 성장)

  • 정재우;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.539-543
    • /
    • 1992
  • The continuous growth method was developed for Mn-Zn Ferrite single crystals. It is a new process that the polycrystalline MnχZn1-χFe2O4 raw materials are supplied continuously from the powder feeding system to the crucible heated by R.F. induction and melted in the crucible, and after the single crystals seed is attached to crucible's hole, the crystals are pulled downward with rotation. Growing the crystals by using the growth method different from the conventional Bridgman or Floating Zone method, we defined the factors having effect on the crystal growing through the pre-experiments. They are temperature distribution in the crucible, melt velocity according to its height, wettability between the crucible's bottom and melt. Therefore, Mn-Zn Ferrite single crystals were to be grown by attaining the appropriate melt height in the crucible, powder feeding rate, temperature gradient between the crucible and interface, crystal growing speed, and this method was confirmed to have possibility for single crystal growing.

  • PDF

Interpretation of the Asymmetric Color and Shape of Brownish Ring in Quartz Crucible

  • Jung, YoonSung;Choi, Jae Ho;Min, Kyung Won;Byun, Young Min;Im, Won Bin;Kim, Hyeong-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.50-52
    • /
    • 2022
  • Brownish rings (BRs) with white interiors are formed during the manufacture of silicon ingots in quartz glass crucibles. These BRs inhibit the yield of silicon ingots. However, the composition and mechanism of the formation of these BRs remain unclear thus far. Therefore, in this study, we analyzed the color and shape of these BRs. Raman analysis revealed that the brown and white colors appear owing to oxygen deficiency rather than crystallization from excess oxygen supply as previously assumed. Moreover, the dark shade of the brown areas depends on the degree of oxygen deficiency and the asymmetrical width of the brown areas is attributed to the direction of the molten silicon flow, which is influenced by the rotation and heat of the ingot crucible.

A study on the brownish ring of quartz glass crucible for silicon single crystal ingot (실리콘 단결정 잉곳용 석영유리 도가니의 brownish ring에 대한 연구)

  • Jung, YoonSung;Choi, Jae Ho;Min, Kyung Won;Byun, Young Min;Im, Won Bin;Noh, Sung-Hun;Kang, Nam-Hun;Kim, Hyeong-Jun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.3
    • /
    • pp.115-120
    • /
    • 2022
  • A brown ring (hereinafter referred to as BR) on the inner surface of a quartz glass crucible used in the manufacturing process of a silicon ingot for semiconductor wafers was studied. BR is 20~30 ㎛ in size and has an asymmetric brown ring shape. The size and distribution of BR were different depending on the crucible location, and the size and distribution of BR were the largest and most abundant in the round part with the highest crucible temperature during Si ingot growth. BR contains cristobalite, which has a higher coefficient of thermal expansion than quartz glass, so it is considered that surface cracks appear. The color development of BR and pin holes are presumed to be due to oxygen vacancies.

Chemical Reaction between Aluminium and graphite Crucible During the Fabrication of Spherical Monosized Al particles

  • Kwon, Hansang
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.99-103
    • /
    • 2018
  • Spherical monosized pure aluminum (Al) particles are successfully fabricated by the pulsated orifice ejection method (POEM). The surface reaction between Al and the graphite crucible is investigated by analysing the microstructure and chemical composition of the materials. No significant chemical reaction occurs between Al and the graphite owing to the crystalline Al oxide (${\gamma}-Al_2O_3$) layer generated in the initial state. The ${\gamma}-Al_2O_3$ layer is clearly observed in all regions between the Al particles and graphite via transmission electron microscopy and confirmed by the selected area diffraction pattern. The morphology of the ${\gamma}-Al_2O_3$ layer perfectly follows the surface morphology of the graphite crucible, which showed nanoscale roughness. This implies that molten Al could not directly contact graphite even though the surface of the crucible became rough to some extent. However, this passivation phenomenon allowed the successful fabrication of monosized pure Al particles. Therefore, POEM is a useful process at least to manufacture monosized pure Al particles.

Effect of TiCl4 Feeding Rate on the Formation of Titanium Sponge in the Kroll Process (Kroll법에 의한 타이타늄 스펀지 생성에 미치는 TiCl4 투입속도의 영향)

  • Lee, Jae Chan;Sohn, Ho Sang;Jung, Jae Young
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.745-751
    • /
    • 2012
  • The Kroll process for magnesium reduction of titanium tetrachloride is used for mass production of titanium sponge. The present study was conducted in a lab scale reactor to develop a better understanding of the mechanism of titanium sponge formation in the Kroll reactor with respect to reaction degrees and the feeding rate of $TiCl_4$. The $MgCl_2$ produced during the initial stage of the reaction was not sunk into the molten magnesium, but covered the surface of the molten magnesium. As a result, subsequently fed $TiCl_4$ reacted with Mg exposed on the edge of molten $MgCl_2$ in the crucible. Therefore, titanium sponge grew toward the center of the crucible from the edge. The temperature of the molten magnesium increased remarkably with the increasing feeding rate of $TiCl_4$. Consequently, fed $TiCl_4$ reacted at the upper side of the crucible with evaporated Mg, and produced titanium on the upper surface of the crucible wall, which increased considerably with the feeding rate of $TiCl_4$.

High quality SiC single crystal growth by using NbC-coated crucible (NbC 코팅된 도가니를 사용한 고품질의 SiC 단결정 성장)

  • Kim, Jeong-Hui;Kim, Woo-Yeon;Park, Mi-Seon;Jang, Yeon-Suk;Lee, Won-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.2
    • /
    • pp.63-68
    • /
    • 2021
  • This study was focused to investigate the effect of NbC-coated crucible on the quality of the SiC crystals. Then, the different properties between SiC crystals grown in a conventional graphite crucible and NbC-coated crucible were systematically compared. SiC crystals were grown using the Physical Vapor Transport (PVT) method at a temperature of 2300℃ and a pressure of 5 Torr in Ar atmosphere. After grinding and polishing, the polytype of the grown SiC crystal was analyzed using Raman spectroscopy, and crystallinity was confirmed by HR-XRD. Furthermore, the defect density and the concentration of impurities were analyzed by an optical microscope and a SIMS, respectively.