• Title/Summary/Keyword: Crowd density estimation

Search Result 8, Processing Time 0.023 seconds

Estimation of Crowd Density in Public Areas Based on Neural Network

  • Kim, Gyujin;An, Taeki;Kim, Moonhyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2170-2190
    • /
    • 2012
  • There are nowadays strong demands for intelligent surveillance systems, which can infer or understand more complex behavior. The application of crowd density estimation methods could lead to a better understanding of crowd behavior, improved design of the built environment, and increased pedestrian safety. In this paper, we propose a new crowd density estimation method, which aims at estimating not only a moving crowd, but also a stationary crowd, using images captured from surveillance cameras situated in various public locations. The crowd density of the moving people is measured, based on the moving area during a specified time period. The moving area is defined as the area where the magnitude of the accumulated optical flow exceeds a predefined threshold. In contrast, the stationary crowd density is estimated from the coarseness of textures, under the assumption that each person can be regarded as a textural unit. A multilayer neural network is designed, to classify crowd density levels into 5 classes. Finally, the proposed method is experimented with PETS 2009 and the platform of Gangnam subway station image sequences.

Measurement of the Crowd Density in Outdoor Using Neural Network (신경망을 이용한 실외 군중 밀도 측정)

  • Song, Jae-Won;An, Tae-Ki;Kim, Moon-Hyun;Hong, You-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.103-110
    • /
    • 2012
  • The population growth along with the urbanization, has caused more problems in many public areas, such as subway airport terminals, hospital, etc. Many surveillance systems have been installed in the public areas, but not all of those can be monitored in real-time, because the operators that observe the monitors are very small compared with the number of the monitors. For example, the observer can miss some crucial accidents or detect after considerable delays. Thus, intelligent surveillance system for preventing the accidents are needed, such as Intelligent Surveillance Systems. in this paper, we propose a new crowd density estimation method which aims at estimating moving crowd using images from surveillance cameras situated in outdoor locations. The moving crowd is estimated from the area where using optical flow. The edge information is also used as feature to measure the crowd density, so we improve the accuracy of estimation of crowd density. A multilayer neural network is designed to classify crowd density into 5 classes. Finally the proposed method is experimented with PETS 2009 images.

Crowd Density Estimation with Multi-class Adaboost in elevator (다중 클래스 아다부스트를 이용한 엘리베이터 내 군집 밀도 추정)

  • Kim, Dae-Hun;Lee, Young-Hyun;Ku, Bon-Hwa;Ko, Han-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.45-52
    • /
    • 2012
  • In this paper, an crowd density in elevator estimation method based on multi-class Adaboost classifier is proposed. The SOM (Self-Organizing Map) based conventional methods have shown insufficient performance in practical scenarios and have weakness for low reproducibility. The proposed method estimates the crowd density using multi-class Adaboost classifier with texture features, namely, GLDM(Grey-Level Dependency Matrix) or GGDM(Grey-Gradient Dependency Matrix). In order to classify into multi-label, weak classifier which have better performance is generated by modifying a weight update equation of general Adaboost algorithm. The crowd density is classified into four categories depending on the number of persons in the crowd, which can be 0 person, 1-2 people, 3-4 people, and 5 or more people. The experimental results under indoor environment show the proposed method improves detection rate by about 20% compared to that of the conventional method.

User Density Estimation System at Closed Space using High Frequency and Smart device

  • Chung, Myoungbeom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.49-55
    • /
    • 2017
  • Recently, for safety of people, there are proposed so many technologies which detect density of people at the specific place or space. The representative technology for crowd density estimation was using image analysis method from CCTV images. However, this method had a weakness which could not be used and which's accuracy was lower at the dark or smog space. Therefore, in this paper, to solve this problem, we proposed a user density estimation system at closed space using high frequency and smart device. The system send inaudible high frequencies to smart devices and it count the smart devices which detect the high frequencies on the space. We tested real-time user density with the proposed system and ten smart devices to evaluate performance. According to the testing results, we confirmed that the proposed system's accuracy was 95% and it was very useful. Thus, because the proposed system could estimate about user density at specific space exactly, it could be useful technology for safety of people and measurement of space use state at indoor space.

Hybrid Crowd Density Estimation Method for Equalizing the Subway Passengers Distribution and Its Application (지하철 객차 승객의 고른 분포를 위한 하이브리드 군중 밀도 측정 방법과 활용앱)

  • Park, Min-Joo;Lim, Won-Jun;Choi, Eun-Ji;Lee, Kang-Hee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.71-73
    • /
    • 2014
  • 본 논문에서는 지하철 내의 인구밀집도 파악을 통한 승객의 이용 편의성을 극대화하고, 군중밀도가 높은 지하철 구간의 경우 고른 인구분포 측정을 통한 승객의 편의성을 극대화하는 플랫폼 및 모바일 앱을 제안한다. 제안하는 시스템으로 기존의 지하철 역내에 설치된 CCTV에 모션벡터 영상처리와 RFID 기술을 결합한 Hybrid CDE로 구성되며, Size-Filtering을 통해서 재검출 과정을 거친다. 이러한 결과 값은 전동차 각 구간의 인구밀집도 정보를 정확히 측정 할 수 있다. 또한 결과 값을 바탕으로 효율적인 인구 유동을 유도할 수 있으며 정보 소외 계층 및 사회적 약자 등, 승객을 안전하게 보호할 수 있는 환경을 조성한다. 시스템 관리자는 학습기능 알고리즘을 통해서 오차 범위를 최소화한 플랫폼 설계를 통해 실시간 모니터링 함으로써 정보 습득 및 제공면에서도 새로운 시스템 설계 제안이 될 것이다.

  • PDF

A Study of Crowd Density Estimation of Railway Platform (철도 승강장 군중 밀도 추정 연구)

  • Kim, Gyu-Jin;An, Tae-Ki;Kim, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2190-2191
    • /
    • 2011
  • 지능적인 감시 체계에 대한 필요성이 증대됨에 따라 많은 곳에서 지능화된 군중에 대한 모니터링을 요구하고 있다. 이는 비단 철도 분야에 있어 예외가 되지 않으며, 철도 서비스 구간 내에서의 필요성 또한 증대되고 있다. 철도 승강장 내에는 보안 감시에 사용되는 CCTV가 설치되어 있다. 이렇게 설치되어 있는 CCTV를 통해 철도 승강장의 영상 정보를 취득할 수 있으며 이것을 이용하여 군중 밀도 추정에 도움이 될 수 있다. 본 논문에서는 철도 승강장 내 군중 밀도를 군중의 움직임으로부터 발생되는 모션벡터를 검출하여 군중 밀도와 모션 벡터와의 상관관계에 대해 연구하였다.

  • PDF

The Crowd Density Estimation Using Pedestrian Depth Information (보행자 깊이 정보를 이용한 군중 밀집도 추정)

  • Yu-Jin Roh;Sang-Min Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.705-708
    • /
    • 2023
  • 다중밀집 사고를 사전에 방지하기 위해 군중 밀집도를 정확하게 파악하는 것은 중요하다. 기존 방법 중 일부는 군중 계수를 기반으로 군중 밀집도를 추정하거나 원근 왜곡이 있는 데이터를 그대로 학습한다. 이 방식은 물체의 거리에 따라 크기가 달라지는 원근 왜곡에 큰 영향을 받는다. 본 연구는 보행자 깊이 정보를 이용한 군중 밀집도 알고리즘을 제안한다. 보행자의 깊이 정보를 계산하기 위해 편차가 적은 머리 크기를 이용한다. 머리를 탐지하기 위해 OC-Sort를 학습모델로 사용한다. 탐지된 머리의 경계박스 좌표, 실제 머리 크기, 카메라 파라미터 등을 이용하여 보행자의 깊이 정보를 추정한다. 이후 깊이 정보를 기반으로 밀도 맵을 추정한다. 제안 알고리즘은 혼잡한 환경에서 객체의 위치와 밀집도를 정확하게 분석하여 군중밀집 사고를 사전에 방지하는 지능형 CCTV시스템의 기반 기술로 활용될 수 있으며, 더불어 보안 및 교통 관리 시스템의 효율성을 향상하는 데 중요한 역할을 할 것으로 기대한다.

Vision-Based Train Position and Movement Estimation Using a Fuzzy Classifier (퍼지 분류기를 이용한 비전 기반 열차 위치 및 움직임 추정)

  • Song, Jae-Won;An, Tae-Ki;Lee, Dae-Ho
    • Journal of Digital Convergence
    • /
    • v.10 no.1
    • /
    • pp.365-369
    • /
    • 2012
  • We propose a vision-based method that estimates train position and movement for railway monitoring in which we use a fuzzy classifier to determine train states. The proposed method employs frame difference and background subtraction for estimating train motion and presence, respectively. These features are used as the linguistic variables of the fuzzy classifier. Experimental results show that the proposed method can correctly estimate train position and movement. Therefore the method can be used for railway monitoring systems which estimate crowd density or protect safety.