KSII Transactions on Internet and Information Systems (TIIS)
/
제6권9호
/
pp.2170-2190
/
2012
There are nowadays strong demands for intelligent surveillance systems, which can infer or understand more complex behavior. The application of crowd density estimation methods could lead to a better understanding of crowd behavior, improved design of the built environment, and increased pedestrian safety. In this paper, we propose a new crowd density estimation method, which aims at estimating not only a moving crowd, but also a stationary crowd, using images captured from surveillance cameras situated in various public locations. The crowd density of the moving people is measured, based on the moving area during a specified time period. The moving area is defined as the area where the magnitude of the accumulated optical flow exceeds a predefined threshold. In contrast, the stationary crowd density is estimated from the coarseness of textures, under the assumption that each person can be regarded as a textural unit. A multilayer neural network is designed, to classify crowd density levels into 5 classes. Finally, the proposed method is experimented with PETS 2009 and the platform of Gangnam subway station image sequences.
수동적인 보안감시 시스템의 문제점이 계속적으로 제기되면서 실시간으로 공공장소에서의 군중에 대한 관리 및 감독을 지원하는 자동화되고 지능적인 군중 밀도 측정에 대한 필요성이 증대되고 있다. 이에 따라, 군중의 밀도를 측정하기 위한 많은 연구가 시도되었으나 실시간 혼잡도 정보 취득이 어렵고, 조명변화 등에 취약한 한계가 드러났다. 본 논문에서는 이러한 문제점을 해결하기 위해 군중 특징 정보로써 옵티컬 플로우를 검출하고 또한 Sobel 외곽선 추출 알고리즘에 의해 외곽선을 추출하여 각 특징을 입력으로 학습된 다층 신경망을 통해 실시간으로 실외 공공장소에서의 군중 밀도를 측정하였다.
본 논문에서는 다중 클래스 아다부스트 기반의 분류기를 이용하여 엘리베이터 내 군집 밀도를 추정하는 방법을 제안한다. SOM을 사용하는 기존의 방법은 재현성이 떨어지며 충분한 성능을 내지 못한다. 제안한 방법은 GLDM(Grey-Level Dependency Matrix)과 GGDM(Grey-Gradient Dependency Matrix)의 텍스처 특징과 다중 클래스 아다부스트 기반의 분류기를 통해 실내 군집 밀도를 추정한다. 다중 클래스를 분류하기 위해 기존의 아다부스트 알고리즘에서 웨이트 업데이트 식을 변형하여 더 높은 성능의 약한 분류기를 생성하도록 하였다. 군집 밀도는 인원수에 따라 0명, 1~2명, 3~4명, 5명 이상 등 네 가지 클래스로 구분하였다. 엘리베이터 내 영상을 이용한 모의 실험 결과 제안된 방법은 기존의 방법보다 약 20% 정도의 검출률 향상을 나타내었다.
Recently, for safety of people, there are proposed so many technologies which detect density of people at the specific place or space. The representative technology for crowd density estimation was using image analysis method from CCTV images. However, this method had a weakness which could not be used and which's accuracy was lower at the dark or smog space. Therefore, in this paper, to solve this problem, we proposed a user density estimation system at closed space using high frequency and smart device. The system send inaudible high frequencies to smart devices and it count the smart devices which detect the high frequencies on the space. We tested real-time user density with the proposed system and ten smart devices to evaluate performance. According to the testing results, we confirmed that the proposed system's accuracy was 95% and it was very useful. Thus, because the proposed system could estimate about user density at specific space exactly, it could be useful technology for safety of people and measurement of space use state at indoor space.
본 논문에서는 지하철 내의 인구밀집도 파악을 통한 승객의 이용 편의성을 극대화하고, 군중밀도가 높은 지하철 구간의 경우 고른 인구분포 측정을 통한 승객의 편의성을 극대화하는 플랫폼 및 모바일 앱을 제안한다. 제안하는 시스템으로 기존의 지하철 역내에 설치된 CCTV에 모션벡터 영상처리와 RFID 기술을 결합한 Hybrid CDE로 구성되며, Size-Filtering을 통해서 재검출 과정을 거친다. 이러한 결과 값은 전동차 각 구간의 인구밀집도 정보를 정확히 측정 할 수 있다. 또한 결과 값을 바탕으로 효율적인 인구 유동을 유도할 수 있으며 정보 소외 계층 및 사회적 약자 등, 승객을 안전하게 보호할 수 있는 환경을 조성한다. 시스템 관리자는 학습기능 알고리즘을 통해서 오차 범위를 최소화한 플랫폼 설계를 통해 실시간 모니터링 함으로써 정보 습득 및 제공면에서도 새로운 시스템 설계 제안이 될 것이다.
지능적인 감시 체계에 대한 필요성이 증대됨에 따라 많은 곳에서 지능화된 군중에 대한 모니터링을 요구하고 있다. 이는 비단 철도 분야에 있어 예외가 되지 않으며, 철도 서비스 구간 내에서의 필요성 또한 증대되고 있다. 철도 승강장 내에는 보안 감시에 사용되는 CCTV가 설치되어 있다. 이렇게 설치되어 있는 CCTV를 통해 철도 승강장의 영상 정보를 취득할 수 있으며 이것을 이용하여 군중 밀도 추정에 도움이 될 수 있다. 본 논문에서는 철도 승강장 내 군중 밀도를 군중의 움직임으로부터 발생되는 모션벡터를 검출하여 군중 밀도와 모션 벡터와의 상관관계에 대해 연구하였다.
다중밀집 사고를 사전에 방지하기 위해 군중 밀집도를 정확하게 파악하는 것은 중요하다. 기존 방법 중 일부는 군중 계수를 기반으로 군중 밀집도를 추정하거나 원근 왜곡이 있는 데이터를 그대로 학습한다. 이 방식은 물체의 거리에 따라 크기가 달라지는 원근 왜곡에 큰 영향을 받는다. 본 연구는 보행자 깊이 정보를 이용한 군중 밀집도 알고리즘을 제안한다. 보행자의 깊이 정보를 계산하기 위해 편차가 적은 머리 크기를 이용한다. 머리를 탐지하기 위해 OC-Sort를 학습모델로 사용한다. 탐지된 머리의 경계박스 좌표, 실제 머리 크기, 카메라 파라미터 등을 이용하여 보행자의 깊이 정보를 추정한다. 이후 깊이 정보를 기반으로 밀도 맵을 추정한다. 제안 알고리즘은 혼잡한 환경에서 객체의 위치와 밀집도를 정확하게 분석하여 군중밀집 사고를 사전에 방지하는 지능형 CCTV시스템의 기반 기술로 활용될 수 있으며, 더불어 보안 및 교통 관리 시스템의 효율성을 향상하는 데 중요한 역할을 할 것으로 기대한다.
본 논문에서는 열차 선로 모니터링을 위한 열차의 위치 및 이동을 추정하는 비전 기반 기법을 제안한다. 퍼지 분류기를 이용하여 열차의 상태를 판별하며, 프레임 차와 배경 감산을 각각 열차의 움직임과 존재를 판결하기 위해서 사용하고, 퍼지 분류기의 언어 변수로 사용된다. 실험 결과에서 제안하는 기법은 열차의 위치와 움직임을 정확히 추정하는 것을 볼 수 있다. 그러므로 제안하는 기법은 군중 밀도를 추정하거나 안전 감시를 수행하는 열차 모니터링 시스템에 활용될 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.