International journal of advanced smart convergence
/
v.8
no.2
/
pp.204-210
/
2019
Mobile Crowd Computing is one of the most efficient and effective way to collect the Electronic health records and they are very intelligent in processing them. Mobile Crowd Computing can handle, analyze and process the huge volumes of Electronic Health Records (EHR) from the high-performance Cloud Environment. Electronic Health Records are very sensitive, so they need to be secured, authenticated and processed efficiently. However, security, privacy and authentication of Electronic health records(EHR) and Patient health records(PHR) in the Mobile Crowd Computing Environment have become a critical issue that restricts many healthcare services from using Crowd Computing services .Our proposed Efficient Multi-layer Encryption Framework(MLEF) applies a set of multiple security Algorithms to provide access control over integrity, confidentiality, privacy and authentication with cost efficient to the Electronic health records(HER)and Patient health records(PHR). Our system provides the efficient way to create an environment that is capable of capturing, storing, searching, sharing, analyzing and authenticating electronic healthcare records efficiently to provide right intervention to the right patient at the right time in the Mobile Crowd Computing Environment.
International Journal of Advanced Culture Technology
/
v.6
no.4
/
pp.226-232
/
2018
The rapid pace of growth in internet usage and rich mobile applications and with the advantage of incredible usage of internet enabled mobile devices the Green Mobile Crowd Computing will be the suitable area to research combining with cloud services architecture. Our proposed Framework will deploy the eHealth among various health care sectors and pave a way to create a Green Mobile Application to provide a better and secured way to access the Products/ Information/ Knowledge, eHealth services, experts / doctors globally. This green mobile crowd computing and cloud architecture for healthcare information systems are expected to lower costs, improve efficiency and reduce error by also providing better consumer care and service with great transparency to the patient universally in the field of medical health information technology. Here we introduced novel architecture to use of cloud services with crowd sourcing.
International Journal of Computer Science & Network Security
/
v.24
no.4
/
pp.26-34
/
2024
Most human emotions are conveyed through facial expressions, which represent the predominant source of emotional data. This research investigates the impact of crowds on human emotions by analysing facial expressions. It examines how crowd behaviour, face recognition technology, and deep learning algorithms contribute to understanding the emotional change according to different level of crowd. The study identifies common emotions expressed during congestion, differences between crowded and less crowded areas, changes in facial expressions over time. The findings can inform urban planning and crowd event management by providing insights for developing coping mechanisms for affected individuals. However, limitations and challenges in using reliable facial expression analysis are also discussed, including age and context-related differences.
Ullah, Waseem;Ullah, Fath U Min;Baik, Sung Wook;Lee, Mi Young
The Journal of Korean Institute of Next Generation Computing
/
v.15
no.6
/
pp.7-14
/
2019
The automatic monitoring and detection of crowd behavior in the surveillance videos has obtained significant attention in the field of computer vision due to its vast applications such as security, safety and protection of assets etc. Also, the field of crowd analysis is growing upwards in the research community. For this purpose, it is very necessary to detect and analyze the crowd behavior. In this paper, we proposed a deep learning-based method which detects abnormal activities in surveillance cameras installed in a smart city. A fine-tuned VGG-16 model is trained on publicly available benchmark crowd dataset and is tested on real-time streaming. The CCTV camera captures the video stream, when abnormal activity is detected, an alert is generated and is sent to the nearest police station to take immediate action before further loss. We experimentally have proven that the proposed method outperforms over the existing state-of-the-art techniques.
This study focuses on event-driven social media (EDSM), which supports the production of unique cultural items of small groups by satisfying the conflicting desires of distinctiveness and assimilation that small groups possess. EDSM is a system which promotes the production of idioculture through small group interaction by using an actual event in which people participate in small groups. By setting up an EDSM system in a university festival in which 10,000 to 15,000 people gather in small groups, idioculture production was tested for approximately eight hours and a half. Interaction records gathered from the test, as well as focus group interview data garnered soon after were used to analyze usage patterns of EDSM, types of idiocultures produced, and resulting factors of user experience. Through this, considerations upon designing future EDSM were proposed.
International Journal of Computer Science & Network Security
/
v.21
no.4
/
pp.131-139
/
2021
In current time, anomaly detection is the primary concern of the administrative authorities. Suspicious activity identification is shifting from a human operator to a machine-assisted monitoring in order to assist the human operator and react to an unexpected incident quickly. These automatic surveillance systems face many challenges due to the intrinsic complex characteristics of video sequences and foreground human motion patterns. In this paper, we propose a novel approach to detect anomalous human activity using a hybrid approach of statistical model and Genetic Programming. The feature-set of local motion patterns is generated by a statistical model from the video data in an unsupervised way. This features set is inserted to an enhanced Genetic Programming based classifier to classify normal and abnormal patterns. The experiments are performed using publicly available benchmark datasets under different real-life scenarios. Results show that the proposed methodology is capable to detect and locate the anomalous activity in the real time. The accuracy of the proposed scheme exceeds those of the existing state of the art in term of anomalous activity detection.
Recent catastrophic accidents at the underground subway stations in South Korea have proven that the subway evacuation is an important safety concern. Previous studies have used commercial programs for safety assessment or have been focused on development of computing algorithms rather than the basic analysis data which form the foundation of studies. In this study, we designed a new movement recording apparatus which measured and analyzed crowd movements including but not limited to moving velocity, specific flow rate and crowd density. Moreover, We propose new effective analysis method for evacuation studies with this apparatus.
Kim, Jinpyung;Jang, Gyujin;Kim, Gyujin;Kim, Moon-Hyun
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.8
/
pp.2948-2963
/
2015
In the field of computer vision, visual surveillance systems have recently become an important research topic. Growth in this area is being driven by both the increase in the availability of inexpensive computing devices and image sensors as well as the general inefficiency of manual surveillance and monitoring. In particular, the ultimate goal for many visual surveillance systems is to provide automatic activity recognition for events at a given site. A higher level of understanding of these activities requires certain lower-level computer vision tasks to be performed. So in this paper, we propose an intelligent activity recognition model that uses a structure learning method and a classification method. The structure learning method is provided as a K2-learning algorithm that generates Bayesian networks of causal relationships between sensors for a given activity. The statistical characteristics of the sensor values and the topological characteristics of the generated graphs are learned for each activity, and then a neural network is designed to classify the current activity according to the features extracted from the multiple sensor values that have been collected. Finally, the proposed method is implemented and tested by using PETS2013 benchmark data.
Recently, concomitant with a surge in numbers of Internet of Things (IoT) devices with various sensors, mobile crowdsensing (MCS) has provided a new business model for IoT. For example, a person can share road traffic pictures taken with their smartphone via a cloud computing system and the MCS data can provide benefits to other consumers. In this service model, to encourage people to actively engage in sensing activities and to voluntarily share their sensing data, providing appropriate incentives is very important. However, the sensing data from personal devices can be sensitive to privacy, and thus the privacy issue can suppress data sharing. Therefore, the development of an appropriate privacy protection system is essential for successful MCS. In this study, we address this problem due to the conflicting objectives of privacy preservation and incentive payment. We propose a privacy-preserving mechanism that protects identity and location privacy of sensing users through an on-demand incentive payment and group signatures methods. Subsequently, we apply the proposed mechanism to one example of MCS-an intelligent parking system-and demonstrate the feasibility and efficiency of our mechanism through emulation.
In general, algorithms to find continuous k-nearest neighbors has been researched on the location based services monitoring periodically the moving objects such as vehicles and mobile phone. Those researches assume the environment that the number of query points is much less than that of moving objects and the query points are not moved but fixed. In gaming environments, cases to find k-nearest neighbors are when computing the next movement considering the neighbors such as flocking, crowd and robot simulations. Thus, every moving object becomes a query point so that the number of query point is same to that of moving objects and the query points are also moving. In this paper, we analyze the performance of the existing algorithms focused on location based services how they operate under the gaming environments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.