• Title/Summary/Keyword: Cross-section structure

Search Result 713, Processing Time 0.029 seconds

Study on the Optimum Modification and Modal Analysis of Stiffened Plate of Ship Hull Structure (신체의 Stiffened Plate 구조물의 모우드해석과 최적변경법에 관한 연구)

  • 박성현;박석주;고재용
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.10b
    • /
    • pp.51-58
    • /
    • 2000
  • The purpose of this study is the optimum modification of dynamic characteristics of stiffened plate structure. In the method of the optimization ,finite element method (FEM), sensitivity analysis and optimum structural modification method are used. To begin with, using FEM, the dynamic characteristics of stiffened plate structure is analyzed. Next, rate of change of dynamic characteristic by the change of design variable is calculated using the sensitivity analysis. Then, amount of change of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of plate and cross section moment become a design variable. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate structure.

  • PDF

A Study on the Growing Characteristics of Dendrite Structure of Melted Wire Deteriorated by Over Current (과전류 열화에 의해 용단된 전선의 수지상 조직 성장특성에 관한 연구)

  • Shong, Kil-Mok;Choi, Chung-Seog;Kim, Dong-Woo;Kwak, Hee-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1463-1465
    • /
    • 2003
  • In this paper, we studied on the growing characteristics of dendrite structure of melted wire deteriorated by over current. Electric wire was melted by Jolue's heat. By using HSIS(High Speed Imaging System), we found out a lot of melted parts of wire were dispersed and radiated. Electric wire had narrow melted areas in case of short fusing time. A lot of very small dots generated around the grain of copper cross-section and they were changed into dendrite structure. Dendrite structure appeared at the values lower than 2.5[A/sec]. In case of very short fusing time, fusing current was calculated by empirical formula. The Preece equation was not enough to analyze a variety of characteristics of melted wire because it did not consider melting time, atmosphere, etc.

  • PDF

A Study on Stability of Cracked Main Structure in Subway (균열발생 지하철 본선구조물의 안정성 연구)

  • Woo, Jong-Tae;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.187-194
    • /
    • 1999
  • In this study, a series of items on the safety and stability of cracked main structure in subway are investigated and analyzed. Cracks due to dry contraction under the construction can be found when a tensile stress of cross section is higher than tensile strength at a value of coefficient of dry contraction $200{\times}10^{-6}$. It is concluded that there is no problems when load carrying capacity, that is, an ability of resisting loads of structure is enough in this analytical model. Also, it is concluded that this model has a desirable serviceability because a width of bending crack is lower than allowable one.

  • PDF

A Study on Radar Absorbing Structure for Aircraft (항공기용 전파흡수 구조 연구)

  • Han, Won-Jae;Jang, Byung-Wook;Park, Jung-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.24-28
    • /
    • 2010
  • The purpose of this study is to define available microwave absorbing structure for aircraft from in the X-band(8.2~12.4GHz) frequencies. The electromagnetic wave absorption or shielding techniques is an important issue not only for military purpose but also for commercial purposes. Aircraft Radar Absorbing Structure(RAS) is absorbed or scattered propagation waves from the enemy radar. There are absorbing technologies at shaping design techniques and using Radar Absorbing Materials(RAM). RAM is more important because shaping design can't include perfect radar absorbing performance. In this study, based on material properties was introduced RAM and to analyze the each characteristics. Finally, we comparison appropriate RAM for aircraft.

  • PDF

Multilayered viscoelastic beam loaded in torsion under strain-path control: A delamination analysis

  • Victor I. Rizov
    • Advances in materials Research
    • /
    • v.13 no.2
    • /
    • pp.87-102
    • /
    • 2024
  • This paper is focused on the delamination analysis of a multilayered beam structure loaded in torsion under strain-path control. The beam under consideration has a rectangular cross-section. The layers of the beam are made of different viscoelastic materials which exhibit continuous inhomogeneity in longitudinal direction. Since the delamination is located inside the beam structure, the torsion moments in the two crack arms are obtained by modeling the beam as an internally static undetermined structure. The strain energy stored in the beam is analyzed in order to derive the strain energy release rate (SERR). Since the delamination is located inside the beam, the delamination has two tips. Thus, solutions of the SERR are obtained for both tips. The solutions are verified by analyzing the beam compliance. Delamination analysis with bending-torsion coupling is also performed. The solutions derived are timedependent due to two factors. First, the beam has viscoelastic behavior and, second, the angle of twist of the beam-free end induced by the external torsion moment changes with time according to a law that is fixed in advance.

Material and Geometric Nonlinear Analysis of Plane Structure Using Co-rotational Fiber-section Beam Elements (동시회전의 화이버 단면 보 요소를 이용한 평면 구조물의 재료 및 기하 비선형 해석)

  • Kim, Jeongsoo;Kim, Moon Kyum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.255-263
    • /
    • 2017
  • This paper presents a beam element capable of conducting material and geometric nonlinear analysis for applications requiring the ultimate behavioral analysis of structures with composite cross-sections. The element formulation is based on co-rotational kinematics to simulate geometrically nonlinear behaviors, and it uses the fiber section method to calculate the stiffness and internal forces of the element. The proposed element was implemented using an in-house numerical program in which an arc-length method was adopted to trace severe nonlinear responses(such as snap-through or snapback), as well as ductile behavior after the peak load. To verify the proposed method of element formulation and the accuracy of the program that was used to employ the element, several numerical studies were conducted and the results from these numerical models were compared with those of three-dimensional continuum models and previous studies, to demonstrate the accuracy and computational efficiency of the element. Additionally, by evaluating an example case of a frame structure with a composite member, the effects of differences between composite material properties such as the elastic modulus ratio and strength ratio were analyzed. It was found that increasing the elastic modulus of the external layer of a composite cross-section caused quasi-brittle behavior, while similar responses of the composite structure to those of homogeneous and linear materials were shown to increase the yield strength of the external layer.

An Experimental Study on the Structure Behavior of Deck Slabs in PSC Box Girder Bridges (프리스트레스트 콘크리트 박스거더 교량 바닥판의 구조거동에 관한 실험 연구)

  • 오병환;이성철;박성용;김성태;박성룡;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.319-322
    • /
    • 2002
  • In this paper, an experimental study is carried out to find out structural behavior of upper slab in concrete box girder bridges. The major variables in the tests are the cross-section of upper slab including haunch dimensions. The strains of concrete and steel bars and the deflections of slabs are measured automatically during the tests. The test results indicate that the size of haunches has much influence on the structural behavior of box girders. The appropriate haunch dimensions are suggested from the present study.

  • PDF

Electromagnetic Scattering from Conductors Coated with a Dielectric Material (유전체로 코팅된 도체의 전자파 산란)

  • Han, Sang-Ho;Seo, Jung-Hoon;An, Chong-Chul;Jung, Baek-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.82-85
    • /
    • 2003
  • In this paper, we present the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional conducting objects coated with a dielectric material. The integral equation treated here is the combined field integral equation. Numerical results of radar cross section for coated conducting structure are presented and compared with other available solutions.

  • PDF

Shape Optimization of Rotating Cantilever Beams Considering Their Varied Modal Characteristics

  • Cho, Jung-Eun;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.246-252
    • /
    • 2004
  • The modal characteristics of rotating structures vary with the rotating speed. The material and the geometric properties of the structures as well as the rotating speed influence the variations of their modal characteristics. Very often, the modal characteristics of rotating structures need to be specified at some rotating speeds to meet their design requirements. In this paper, rotating cantilever beam is chosen as a design target structure. Optimization problems are formulated and solved to find the optimal shapes of rotating beams with rectangular cross section.