• Title/Summary/Keyword: Cross-section structure

Search Result 713, Processing Time 0.031 seconds

Structure Design Optimization of Small Class Forklift for Idle Vibration Reduction (소형 지게차의 Idle 진동 저감을 위한 차체 구조 최적 설계)

  • Lee, Wontae;Kim, Younghyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.660-664
    • /
    • 2014
  • A diesel forklift truck under 3-ton class has disadvantages in the vibration transmission path. Because the weight ratio of body structure to powertrain which is source of excitation force is lower th an a mid-class forklift. In addition, the torsional and bending vibration mode frequencies of body structure are within the engine excitation frequency range, then high idle vibration generated by resonance. In this paper vehicle body structure design and optimization technique considering idle vibration reduction are presented. Design sensitivity analysis is applied to search the sensitive of design parameters in body structure. The design parameters such as thickness and pillar cross section were optimized to increase the torsional and bending vibration mode frequencies.

  • PDF

An Experimental Study on the Fire Behavior of CFT Column under the Constant Axial Loading Condition in Fire (일정축력을 받는 콘크리트 충전 각형기둥의 경계조건 변화에 따른 화재거동특성에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Min, Byung-Youl;Kwon, In-Kyu;Kwon, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.69-75
    • /
    • 2010
  • A concrete filled square steel tube (CFT) is composed of the external steel material, which its strength is reduced in fire due to sudden temperature increase, and the internal concrete with high thermal capacity that can ensure the fire resistance performance of the structure. Therefore, research about the influence factors of the structural performance of CFT column is required in order to apply CFT column to a fire resisting structure, and additional research about influence for each condition is also necessary. Among the influence factors, the boundary condition between column and beam is important structurally, and it is one of the major factors that determine overall fire resisting performance. This study performed a fire experiment under loading in order to analyse the influences of CFT column to the boundary condition. As the results of the experiment, fire resistance time of 106 minutes was ensured for the clamped-end condition but 89 minutes for the hinge-end condition in case of the 360 cross section. And, fire resistance time of 113 minutes was ensured for the clamped-end condition but 78 minutes for the hinge-end condition in case of the 280 cross section.

A Study on Stealth Design for Exterior Equipment Arrangement Considering the Multi-Bounce Effect (다중반사를 고려한 함정의 외부 탑재 장비 최적배치 연구)

  • Hwang, Joon-Tae;Hong, Suk-Yoon;Kwon, Hyun-Wung;Kim, Jong-Chul;Song, Jee-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.918-925
    • /
    • 2017
  • Multiple reflections on exterior equipment with complex shape on naval ships cause unexpectedly high Radar Cross Section (RCS) distributions, and the directions of reradiated electromagnetic waves are hard to predict. Therefore, the optimum arrangement of exterior equipments should be considered according to the Radar Absorbing Structure (RAS) method. In this paper, the optimum arrangement for exterior equipments was determined to reduce multiple reflections and RCS even with complex shapes. The sequential descending arrangement method was used to establish an optimum arrangement algorithm. An LCS-2 type model was selected for optimum exterior equipment arrangements. In order to reduce computational cost, RCS distributions and multiple reflection path analysis of exterior equipments was carried out to select exterior equipments for optimum arrangement, and an optimum arrangement was determined to find positions with minimum RCS values. Also, the RCS reduction effect was analyzed using detectable radar range.

Turbulent Flow Field Structure of Initially Asymmetric Jets

  • Kim, Kyung-Hoon;Kim, Bong-Whan;Kim, Suk-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1386-1395
    • /
    • 2000
  • The mear field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. There pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the upstream of the pipe exit, secondary flow through the bend mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameter-long straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases.

  • PDF

Nonlinear analyses of steel beams and arches using virtual unit moments and effective rigidity

  • Koubova, Lenka;Janas, Petr;Markopoulos, Alexandros;Krejsa, Martin
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.755-765
    • /
    • 2019
  • This study examined geometric and physical nonlinear analyses of beams and arches specifically from rolled profiles used in mining and underground constructions. These profiles possess the ability to create plastic hinges owing to their robustness. It was assumed that displacements in beams and arches fabricated from these profiles were comparable with the size of the structure. It also considered changes in the shape of a rod cross-section and the nonlinearities of the structure. The analyses were based on virtual unit moments, effective flexural rigidity of used open sections, and a secant method. The use of the approach led to a solution for the "after-critical" condition in which deformation increased with decreases in loads. The solution was derived for static determinate beams and static indeterminate arches. The results were compared with results obtained in other experimental tests and methods.

Design Optimization of Composite Radar Absorbing Structures to Improve Stealth Performance

  • Jang, Byungwook;Kim, Myungjun;Park, Jungsun;Lee, Sooyong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • In this study, an efficient method of designing laminate composite radar absorbing structures (RAS) is proposed with consideration given to the structural shape so as to improve aircraft stealth performance. The calculation of the radar cross section (RCS) should be decreased to enhance the efficiency of the stochastic optimization when designing an RAS. In the proposed method, RAS are optimized to match up the input impedance of the minimal RCS, which is obtained by using physical optics and the transmission line theory. Single and double layer dielectric RAS for aircraft wings are employed as numerical examples and designed using the proposed method, RCS minimization and reflection coefficient minimization. The availability of the proposed method is assessed by comparing the similarity of the results and computation time with other design methods. According to the results, the proposed method produces the same results as the stochastic optimization, which adopts the RCS as the objective function, and can improve RAS design efficiency by reducing the number of RCS analyses.

Innovation and FDI: Applying Random Parameters Methods to KIS Data (기술혁신과 FDI)

  • Kim, Byung-Woo
    • Journal of Korea Technology Innovation Society
    • /
    • v.13 no.3
    • /
    • pp.513-537
    • /
    • 2010
  • According to the "FDI-as-market-discipline" hypothesis, inward FDI acts as a mechanism of change in market structure affecting innovative activities of domestic firms. We used panel KIS data for testing this hypothesis. Binary probit estimation shows that, in contrast to the German case of Bertschek (1995), FDI is insignificant in Korean case for explaining product innovation. 1his result maybe comes from the fact that the industries in Korea are more monopolistic or oligopolistic than those of Germany. Using panel data, we tried random parameter estimation using matrix weighted average of GLS and OLS. The result shows different estimates from cross-section outcome and panel estimation with parameter homogeneity, so we can infer large parameter heterogeneity across firms. But, interpretation for FDI variable is similar across panel and cross-section estimation.

  • PDF

Numerical Investigation of Scattering from a Surface Dielectric Barrier Discharge Actuator under Atmospheric Pressure

  • Kim, Yuna;Kim, Sangin;Kim, Doo-Soo;Oh, Il-Young;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.52-57
    • /
    • 2018
  • Surface dielectric barrier discharge (SDBD), which is widely used to control turbulence in aerodynamics, has a significant effect on the radar cross-section (RCS). A four-way linearly synthesized SDBD air plasma actuator is designed to bolster the plasma effects on electromagnetic waves. The diffraction angle is calculated to predict the RCS because of the periodic structure of staggered electrodes. The simplified plasma modeling is utilized to calculate the inhomogeneous surface plasma distribution. Monostatic RCS shows the diffraction in the plane perpendicular to the electrode array and the notable distortion by plasma. In comparison, the overall pattern is maintained in the parallel plane with minor plasma effects. The trends also appear in the bistatic RCS, which has a significant difference in the observation plane perpendicular to the electrodes. The peaks by Bragg's diffraction are shown, and the RCS is reduced by 10 dB in a certain range by the plasma effect. The diffraction caused by the actuator and the inhomogeneous air plasma should be considered in designing an SDBD actuator for a wide range of application.

A 3-DOF forced vibration system for time-domain aeroelastic parameter identification

  • Sauder, Heather Scot;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.481-500
    • /
    • 2017
  • A novel three-degree-of-freedom (DOF) forced vibration system has been developed for identification of aeroelastic (self-excited) load parameters used in time-domain response analysis of wind-excited flexible structures. This system is capable of forcing sinusoidal motions on a section model of a structure that is used in wind tunnel aeroelastic studies along all three degrees of freedom - along-wind, cross-wind, and torsional - simultaneously or in any combination thereof. It utilizes three linear actuators to force vibrations at a consistent frequency but varying amplitudes between the three. This system was designed to identify all the parameters, namely, aeroelastic- damping and stiffness that appear in self-excited (motion-dependent) load formulation either in time-domain (rational functions) or frequency-domain (flutter derivatives). Relatively large displacements (at low frequencies) can be generated by the system, if required. Results from three experiments, airfoil, streamlined bridge deck and a bluff-shaped bridge deck, are presented to demonstrate the functionality and robustness of the system and its applicability to multiple cross-section types. The system will allow routine identification of aeroelastic parameters through wind tunnel tests that can be used to predict response of flexible structures in extreme and transient wind conditions.

Analysis of Electromagnetic Scattering from Arbitrarily Shaped Three-Dimensional Dielectric Objects Using Combined Field Integral Equation (결합 적분방정식을 이용한 삼차원 임의형태 유전체의 전자파 산란 해석)

  • 정백호;한상호;이화용
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.10
    • /
    • pp.27-37
    • /
    • 2002
  • In this paper, we present various combined field integral equation (CFIE) formulations for the analysis of electromagnetic scattering from arbitrarily shaped three dimensional homogeneous dielectric body in the frequency domain. For the CFIE case, we propose eight separate formulations with different combinations of testing functions that result in sixteen different formulations of CFIE by neglecting one of testing terms. One of the objectives of this paper is to illustrate that not all CFIE are valid methodologies in removing defects, which occur at a frequency corresponding to an internal resonance of the structure. Numerical results involving far scattered fields and radar cross section (RCS) are presented for a dielectric sphere to illustrate which formulation works and which do not.