• 제목/요약/키워드: Cross-passage

검색결과 131건 처리시간 0.031초

Mechanical Mechanism of Main Tunnels and Cross Passage Construction - A 3D Numerical Investigation

  • Yoo, Chungsik;Shuaishuai, Cui;Ke, Wu;Qianjn, Zhang;Zheng, Zhang;Jiahui, Zhao
    • 한국지반신소재학회논문집
    • /
    • 제18권1호
    • /
    • pp.11-23
    • /
    • 2019
  • This paper presents the results of a three-dimensional numerical investigation into the mechanical mechanism of main tunnels and cross passage construction. Aimed at the complex space structure composed of two main tunnels and cross passage, 3D numerical model of the structure and surrounding rock was built to analyze the influence. Comparative analysis of different buried depths were carried out. The results of the study indicate that the stress concentration was occurred in the intersecting linings, especially in the opening side lining, which leads to an unfavorable form of force that is pulled up by the upper and lower sections in the intersecting linings due to the construction of the cross passage. The excavation of the cross passage also destroys the stability of the original soil layer and causes settlement of the surface and main tunnels. Practical implications of the findings are discussed.

도로터널 방재시스템 개발 - 자연환기를 수행하는 중규모 도로터널의 정량적 위험도평가관한 연구 - (Development of safety system for Road Tunnel - The study of Quantitative risk assessment for middle scale road tunnel with natural ventilation system -)

  • 유지오;신현준;김종원
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.67-70
    • /
    • 2008
  • As a part of the project on road tunnel fire safety system development, Quantitative Risk Assessment program was developed. In this study, We carried out Quantitative Risk Assessment with this program by using a factor of cross passage interval, warning announcement time and congestion ratio etc for 1km tunnel with natural ventilation. In the case of 250m below of cross passage interval, Risk value due to warning announcement time was a slightly changed. but if cross passage interval is more than 250m, expected fatalities in the same HRR(heat release rate) was sharp increased. As a result, Quantitative Risk Assessment program which was developed in this research project is possible to risk assessment with ventilation type, cross passage for evacuation and detection system response property etc. hereafter, this program look forward to use as a tool for road tunnel performance based design.

  • PDF

곡관부를 가지는 내부 냉각유로에서 회전수 변화에 따른 열전달 및 유동 특성 ( I ) - 엇갈린 요철배열 덕트 - (Effects of Rotation Speed on Heat Transfer and Flow in a Coolant Passage with Turning Region ( I ) - Cross Ribbed Duct -)

  • 김경민;김윤영;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.737-746
    • /
    • 2005
  • The present study investigates heat/mass transfer and flow characteristics in a ribbed rotating passage with turning region. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter ($D_h$) of 26.67 mm. Rib turbulators are attached in the cross arrangement on the leading and trailing surfaces of the passage. The ribs have a rectangular cross section of $2\;mm\;(e){\times}\;mm\;(w)$ and an attack angle of $70^{\circ}$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio ($e/D_h$) is 0.075. The rotation number ranges from 0.0 to 0.20 while the Reynolds number is constant at 10,000. To verify the heat/mass transfer augmentation, internal flow structures are calculated for the same conditions using a commercial code FLUENT 6.1. The heat transfer data of the smooth duct for various Ro numbers agree well with not only the McAdams correlation but also the previous studies. The cross-rib turbulators significantly enhance heat/mass transfer in the passage by disturbing the main flow near the surfaces and generating one asymmetric cell of secondary flow skewing along the ribs. Because the secondary flow is induced in the first-pass and turning region, heat/mass transfer discrepancy is observed in the second-pass even for the stationary case. When the passage rotates, heat/mass transfer and flow phenomena change. Especially, the effect of rotation is more dominant than the effect of the ribs at the higher rotation number in the upstream of the second-pass.

터널 내부 기류 변화에 따른 피난연락갱 간격 설정에 관한 연구 (A study on an interval of tunnel cross passage considering inclination and internal airflow)

  • 이동호;김하영;유지오
    • 한국터널지하공간학회 논문집
    • /
    • 제12권1호
    • /
    • pp.43-49
    • /
    • 2010
  • 도로터널내의 피난연락갱은 화재시 터널내 통행자의 안전성 확보를 위한 방재시설 중 하나이며 국내의 경우 500 m이상 터널에서는 250 m 간격 이하로 설치하도록 규정하고 있다. 그러나 이러한 일괄적인 피난연락갱 간격 산정은 터널내 풍속이나 구배, 화재강도 및 터널의 내공단면적 등 터널의 특성에 대한 고려가 되지 않기 때문에 과대 및 과소 설비가 될 우려가 발생한다. 본 연구에서는 터널 내 풍속 및 구배의 영향을 고려한 피난연락갱 적정간격 산정 방식을 제시하여 터널 설계시 피난연락갱의 효율적인 적용을 목표로 한다. 결과로 터널내 풍속이 0 m/s와 1.0 m/s의 경우 구배에 의한 영향이 뚜렷한 것으로 분석되었으나 2.0 m/s 이상의 경우 터널내 구배에 의한 연기의 이동은 큰 영향을 미치지 못하는 것으로 나타났다. 터널 내부 기류속도 및 터널 구배에 따른 적정 피난연락갱 간격이 상이하게 나타나 250 m 간격인 기존의 일괄적인 피난연락갱 간격 산정이 아닌 터널 내 풍속이나 구배, 화재강도 및 터널의 내공단면적 등 터널의 특성에 대한 고려값을 적용한 적정 피난연락갱 산정이 필요하다.

곡면 끝벽을 갖는 터빈 노즐 안내깃 캐스케이드내 3차원 유동장에 관한 실험적 연구 (Experimental Study on Effects of the Contoured Endwall on the Three-Dimensional Flow in a Turbine Nozzle Guide Vane Cascade)

  • 윤원남;정진택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1975-1980
    • /
    • 2004
  • The three-dimensional flow in a turbine nozzle guide vane passage causes large secondary loss through the passage and increased heat transfer on the blade surface. In order to reduce or control these secondary flows, a linear cascade with a contoured endwall configuration was used and changes in the three-dimensional flow field were analyzed and discussed. Measurements of secondary flow velocity and total pressure loss within the passage have been performed by means of five-hole probes. The investigation was carried out at fixed exit Reynolds number of $4.0{\times}10^5$. The objective of this study is to document the development of the three-dimensional flow in a turbine nozzle guide vane cascade with modified endwall. The results show that the development of passage vortex and cross flow in the cascade composed of one flat and one contoured endwalls are affected by the flow acceleration which occurs in contoured endwall side. The overall loss is reduced near the flat endwall rather than contoured endwall.

  • PDF

1단 축류 가스터빈내 동익의 허브면에 장착된 경계층 펜스의 효과에 대한 수치 해석적 연구 (Numerical Analysis on Effects of the Boundary Layer Fence Equipped on the Hub of Rotor in the First Stage Axial Flow Gas Turbine)

  • 윤덕규;김재춘;김대현;이원석;정진택
    • 한국유체기계학회 논문집
    • /
    • 제12권2호
    • /
    • pp.8-16
    • /
    • 2009
  • The objective of this study is to investigate the three-dimensional turbulence flow characteristics of a rotor passage of an one-stage axial flow gas turbine and to investigate the effects of a boundary layer fence installed on the hub endwall of the rotor passage. Secondary flows occurring within the rotor passage (e.g. horseshoe vortex, passage vortex, and cross flow) cause secondary loss and reduce turbine efficiency. To control these secondary flows, a boundary layer fence measuring half the height of the thickness of the inlet boundary layer was installed on the hub endwall of the rotor passage. This study was performed numerically. The results show that the wake and secondary flows generated by the stator reduced the rotor load to constrain the development of cross flow and secondary flow reinforced by the rotor passage. In addition, the secondary vortices occurring within the rotor passage were reduced by the rotation of the rotor. Although, the boundary layer fence induced additional vortices, giving rise to an additional loss of turbine, its presence was shown to reduce the total pressure loss when compared to effects of the case without fence regardless of the relative position of blades by enervating secondary vortices occurred within the rotor passage.

곡관부를 가지는 내부 냉각유로에서 회전수 변화에 따른 열전달 및 유동 특성 (II) - 평행한 요철배열 덕트 - (Effects of Rotation Speed on Heat Transfer and Flow in a Coolant Passage with Turning Region (II) - Parallel Ribbed Duct -)

  • 김경민;김윤영;이동현;조형희
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.911-920
    • /
    • 2005
  • The present study investigates heat/mass transfer and flow characteristics in a ribbed rotating passage with turning region. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter ($D_h$) of 26.67 mm. Rib turbulators are attached in the parallel arrangement on the leading and trailing surfaces of the passage. The ribs have a rectangular cross section of 2 m (e) $\times$ 3 m (w) and an attack angle of $70^{\circ}$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio (e/$D_h$) is 0.075. The rotation number ranges from 0.0 to 0.20 while the Reynolds number is constant at 10,000. To verify the heat/mass transfer augmentation, internal flow structures are calculated for the same conditions using a commercial code FLUENT 6.1. The results show that a pair of vortex cells are generated due to the symmetric geometry of the rib arrangement, and heat/mass transfer is augmented up to $Sh/Sh_0=2.9$ averagely, which is higher than that of the cross-ribbed case presented in the previous study for the stationary case. With the passage rotation, the main flow in the first-pass deflects toward the trailing surface and the heat transfer is enhanced on the trailing surface. In the second-pass, the flow enlarges the vortex cell close to the leading surface, and the small vortex cell on the trailing surface side contracts to disappear as the passage rotates faster. At the highest rotation number ($R_O=0.20$), the turn-induced single vortex cell becomes identical regardless of the rib configuration so that similar local heat/mass transfer distributions are observed in the fuming region for the cross- and parallel-ribbed case.

재생냉각 유로 내의 유동에 관한 수치해석 (Numerical Analysis of Fluid Flow in a Regenerative Cooling Passage)

  • 조원국
    • 한국추진공학회지
    • /
    • 제4권1호
    • /
    • pp.46-52
    • /
    • 2000
  • 축소형 액체로켓 엔진에 적용될 재생냉각유로에 대한 전산유동해석을 수행하고 결과로서 유로 내의 압력손실과 열전달률을 예측하였다. 유로의 단면적 축소/확대가 압력손실을 증가시키지만 이차유동을 유발하고 난류화를 촉진시켜 열전달률을 상승시키는 효과가 있는 것으로 밝혀졌다. 단면적 변화는 노즐목 부근에서 일어나는데 이는 열부하가 큰 노즐목을 보호하는데 효과적이다. 또한 유량 변화로 인한 재생냉각 장치의 정량적인 성능변화를 관찰하였다.

  • PDF

유로 단면 부분 폐쇄가 액체로켓엔진 성능 변화에 미치는 영향 (The Effect of Partial Blockage of Flow Passage to Performance Change of a Liquid Rocket Engine)

  • 조원국
    • 항공우주시스템공학회지
    • /
    • 제9권4호
    • /
    • pp.67-72
    • /
    • 2015
  • The analysis has been performed on the blockage effect at the propellant flow passage in a liquid rocket engine. This simulates an example of emergency situation where flow passage is partially blocked. The analysis method has been validated by predicting the pump head and flow rate within 1% precision against the measured data of turbopump-gas generator coupled test. When the oxidizer passage is reduced it is predicted that the mixture ratio decreases, the oxidizer pump head increases and the gas generator pressure increases. When the fuel passage is reduced it is predicted that the mixture ratio increases, fuel flow rate decreases and the fuel pump head increases.

Numerical analysis of water flow characteristics after inrushing from the tunnel floor in process of karst tunnel excavation

  • Li, S.C.;Wu, J.;Xu, Z.H.;Li, L.P.;Huang, X.;Xue, Y.G.;Wang, Z.C.
    • Geomechanics and Engineering
    • /
    • 제10권4호
    • /
    • pp.471-526
    • /
    • 2016
  • In order to investigate water flow characteristics after inrushing in process of karst tunnel excavation, numerical simulations for five case studies of water inrush from the tunnel floor are carried out by using the FLUENT software on the background of Qiyueshan high risk karst tunnel. Firstly, the velocity-distance curves and pressure-distance curves are drawn by selecting a series of probing lines in a plane. Then, the variation characteristics of velocity and pressure are analyzed and the respective optimized escape routes are made. Finally, water flow characteristics after inrushing from the tunnel floor are discussed and summarized by comparing case studies under the conditions of different water-inrush positions and excavation situations. The results show that: (1) Tunnel constructors should first move to the tunnel side wall and then escape quickly when water inrush happens. (2) Tunnel constructors must not stay at the intersection area of the cross passage and tunnels when escaping. (3) When water inrush from floor happens in the left tunnel, if tunnel constructors meet the cross passage during escaping, they should pass through it rapidly, turn to the right tunnel and run to the entrance. (4) When water inrush from floor happens in the left tunnel, if there is not enough time to escape, tunnel constructors can run to the trolley and other equipment in the vicinity of the right tunnel working face. In addition, some rescuing equipment can be set up at the high location of the cross passage. (5) When water inrush from floor happens in the cross passage, tunnel constructors should move to the tunnel side wall quickly, turn to the tunnel without water inrush and run to the entrance. (6) When water inrush from floor happens in the cross passage, if there is not enough time to escape, tunnel constructors can run to the trolley and other equipment near by the left or the right tunnel working face. The results are of important practical significance and engineering value to ensure the safety of tunnel construction.