• Title/Summary/Keyword: Cross-linking polymer

Search Result 186, Processing Time 0.025 seconds

Effects of cross-linking methods for polyethylene-based carbon fibers: review

  • Kim, Kwan-Woo;Lee, Hye-Min;An, Jeong-Hun;Kim, Byoung-Suhk;Min, Byung-Gak;Kang, Shin-Jae;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.147-170
    • /
    • 2015
  • In recent decades, there has been an increasing interest in the use of carbon fiber reinforced plastic (CFRP) in aerospace, renewable energy and other industries, due to its low weight and relatively good mechanical properties compared with traditional metals. However, due to the high cost of petroleum-based precursors and their associated processing costs, CF remains a specialty product and as such has been limited to use in high-end aerospace, sporting goods, automotive, and specialist industrial applications. The high cost of CF is a problem in various applications and the use of CFRP has been impeded by the high cost of CF in various applications. This paper presents an overview of research related to the fabrication of low cost CF using polyethylene (PE) control technology, and identifies areas requiring additional research and development. It critically reviews the results of cross-linked PE control technology studies, and the development of promising control technologies, including acid, peroxide, radiation and silane cross-linking methods.

Preparation and Characteristic Studies of Sulfonated Poly (vinyl alcohol) Composite Membranes Containing Aluminum Silicate for PEMFC (고분자 전해질형 연료전지를 위한 알루미늄 실리케이트를 함유한 설폰화 폴리(비닐알코올) 복합막의 제조 및 특성연구)

  • Hwang, In-Seon;Nahm, Kee-Suk;Yoo, Dong-Jin
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.171-177
    • /
    • 2011
  • PVA/GLA/$Al_2O_3{\cdot}3SiO_2$ composite membranes were prepared through the reaction polyvinyl alcohol (PVA) with glutaraldehyde (GLA) as a cross-linking agent and subsequently adding aluminum silicate ($Al_2O_3{\cdot}3SiO_2$) as an inorganic material. The water uptake decreased as the GDL contents increased due to cross-linking process of PVA with GDL, and the ion conductivity increased as the $Al_2O_3{\cdot}3SiO_2$ contents increased in PVA/GLA/$Al_2O_3{\cdot}3SiO_2$ composite membranes. The cross-linking structure of the polymers was confirmed using IR and the tendency of water uptake. The thermal analysis of the copolymers was carried out by TGA. TGA results showed that PVA/GLA composite membrane were more heat-resistant than PVA due to the cross-linking of PVA, and the heat stability of the composite membranes improved much more as the concentration of $Al_2O_3{\cdot}3SiO_2$ increased. Membranes prepared in this study seem to be have thermal stability and increase a tendency of the cation conductivity up to $60^{\circ}C$, but to be exhibit lower performance tendency at over $90^{\circ}C$. Therefore, it is necessary to do more aggressive effort to explore the possibility of application as an ion-conductive composite electrolyte.

Optical and Mechanical Properties of Styrene/Butyl Acrylate/Methyl Methacrylate Terpolymers (스티렌/부틸아크릴레이트/메틸메타아크릴레이트 삼원 공중합체의 투명성 및 기계적 물성)

  • Jang, Sang Jin;Park, Hae Youn;Seo, Kwan Ho
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.191-199
    • /
    • 2015
  • In order to improve the low impact resistance of polystyrene without harming its transparency the styrene monomer was copolymerized with transparent butyl acrylate (BA), and methylmethacrylate (MMA) to obtained a poly(styrene-co-butylacrylate) P(SM-co-BA) and a terpolymer copolymer P(SM-co-BA-co-MMA). The polymers were then cross-linked with the aid of a cross-linking agent dicumylperoxide (DCP), and their mechanical and optical properties were tested. It was found that the contents of monomers and DCP affect the mechanical, thermal, and optical properties of the polymers. An increase in BA contents in P(SM-co-BA) and P(SM-BA-MMA) improved the mechanical strength, but the optical properties remained the same with some exception for P(SM-co-BA). An increase in the DCP contents improved the mechanical but found losses in the optical properties.

Preparation and Properties of Silicone Hydrogel Material Containing Silane Group with Cobalt Oxide Nanoparticles through Thermal Polymerization

  • Lee, Min-Jae;Kong, Ki-Oh;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.273-278
    • /
    • 2020
  • This research is conducted to analyze the compatibility of used monomers and produce the high functional hydrogel ophthalmic polymer containing silane and nanoparticles. VTMS (vinyltrimethoxysilane), TAVS [Triacetoxy(vinyl)silane] and cobalt oxide nanoparticles are used as additives for the basic combination of SilM (silicone monomer), MMA (methyl methacrylate) and MA (methyl acrylate). Also, the materials are copolymerized with EGDMA (ethylene glycol dimethacrylate) as cross-linking agent, AIBN (thermal polymerization initiator) as the initiator. It is judged that the lenses of all combinations are optically excellent and thus have good compatibility. Measurement of the optical and physical characteristics of the manufactured hydrophilic ophthalmic polymer are different in each case. Especially for TAVS, the addition of cobalt oxide nanoparticles increases the oxygen permeability. These materials are considered to create synergy, so they can be used in functional hydrogel ophthalmic lenses.

Characteristics of Organic Gas Sensitivity in Polymer LB Films (고분자 LB막의 유기 가스 감지 특성)

  • 신훈규;최용성;권영수;장상목;이범종
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.109-111
    • /
    • 1993
  • We reported the fabrication and thermal cross-linking of the LB files on porous substrates. The monolayers of the polymers which polyion-conplexed with PAA at the air-water interface can be transferred onto solid substrates such as porous fluorocarbon membrane filter and quartz crystal microbalance. The properties of the monolayers and the LB films investigated by $\pi$-A isothem, FT-IR, and SEM will be discussed. In addition, it was attempted to investigate the reaction of polymer LB films in the organic gas surrounding by the use of LB technique.

  • PDF

Synthesis of an Ordered Porous SiCN Ceramic Film by Self-Assembly of Inorganic-Organic Diblock Copolymer

  • Nghiem Quoc Dat;Kim Dong-Pyo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.296-296
    • /
    • 2006
  • Highly temperature stable mesoporous materials have excellent properties and potential applications. Here we show a novel poly(vinyl)silazane-block-polystyrene diblock copolymer, which was synthesized by controlled/living free radical polymerization with reversible addition fragmentation chain transfer (RAFT) route. The obtained diblock copolymer occurs the phaseseparation on the nanoscale to form ordered nanostructure, which is converted to mesoprorous ceramic after heating at 800oC. This route demonstrates the preparation of highly temperature stable mesoporous silicon carbon nitrides (SiCN) ceramic film directed from highly cross-linking poly(vinyl)silazane blocks with high ceramic yield, which is different from previous pathway.

  • PDF

Crosslinking of Electrospun Poly (VDF-co-HFP) Nanofibrous Membranes by Gamma-ray Irradiation

  • Kim, Yun-Hye;Lim, Youn-Mook;Choi, Jae-Hak;An, Sung-Jun;Park, Jong-Seok;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.2 no.3
    • /
    • pp.105-110
    • /
    • 2008
  • Poly (VDF-co-HFP)/PEGDMA nanofibrous membranes (NFMs) have been prepared by an electrospinning process. Since electrospun NFMs have a nanoporous structure, they have a potential application for a polymer electrolyte or a separator. Poly (VDF-co-HFP) is a polymer electrolyte binder. In order to improve their mechanical properties, poly (VDF-co-HFP)/PEGDMA NFMs were crosslinked by a gamma-ray irradiation. Then the crosslinked NFMs were characterized through an electrolyte uptake, IR structural analysis, and SEM morphological investigation.

An Ultrathin Polymer Network through Polyion-Complex by Using Sodium Dioctadecyl Sulfate as Monolayer Template

  • Lee, Burm-Jong;Kim, Hee-Sang;Kim, Seong-Hoon;Son, Eun-Mi;Kim, Dong-Kyoo;Shin, Hoon-Kyu;Kwon, Young-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.575-579
    • /
    • 2002
  • Two-dimensionally cross-linked ultrathin films of poly(maleic acid-alt-methyl vinyl ether) (MA-MVE) and poly(allylamine) (PAA) were produced by using sodium dioctadecyl sulfate (2C18S) as the monolayer template for Langmuir-Blodgett (LB) depositio n. The template molecules were subsequently removed by thermal treatment followed by extraction. The polyion-complexed monolayers of three components, i.e., template 2C18S, co-spread PAA, and subphase MA-MVE, were formed at the air-water interface. Their monolayer properties were studied by the surface pressure-area isotherm. The monolayers were transferred on solid substrates as Y type. The polyion-complexed LB films and the resulting network films were characterized by FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The cross-linking to form a polymer network was achieved by amide or imide formation through heat treatment under a vacuum. SEM observation of the film on a porous fluorocarbon membrane filter (pore diameter 0.1 ㎛) showed covering of the pores by four layers in the polyion complex state. Extraction by chloroform followed by heat treatment produced hole defects in the film.

Synthesis of a Triblock Copolymer Containing a Diacetylene Group and Its Use for Preparation of Carbon Nanodots

  • Kim, Beom-Jin;Oh, Dong-Kung;Chang, Ji-Young
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.103-107
    • /
    • 2008
  • Carbon nanodots were prepared by the pyrolysis of a triblock copolymer. The triblock copolymer, poly(methyl methacrylate)-b-polystyrene-b-poly(methyl methacrylate) was synthesized by atom transfer radical polymerization using an initiator containing a diacetylene group. A polymer thin film on a mica substrate was prepared by spin-casting at 2,000 rpm from a 0.5 wt% toluene solution of the triblock copolymer. After drying, the cast film was vacuum-annealed for 48 h at $160^{\circ}C$. The annealed film formed a spherical morphology of polystyrene domains with a diameter of approximately 30 nm. The film was exposed to UV irradiation to induce a cross-linking reaction between diacetylene groups. In the subsequent pyrolysis at $800^{\circ}C$, the cross-linked polystyrene spheres were carbonized and the poly(methyl methacrylate) matrix was eliminated, resulting in carbon nanodots deposited on a substrate with a diameter of approximately 5 mn.

Preparation and Characterization of Covalently Cross-linked SPEEK/Cellulose Composite Membranes with Various Cross Linkage Contents for Water Electrolysis (탄화수소계열 수전해용 공유가교 SPEEK/Cellulose 복합막의 다양한 함량의 가교제에 따른 제조 및 특성)

  • KIM, BOYOUNG;KIM, MINJIN;YOON, YOUNGYO;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.411-418
    • /
    • 2018
  • The polymer electrolyte membranes, CL-SPEEK/Cellulose composite membrane I, II, III with the improved electrochemical and mechanical properties were prepared and characterized. The engineering plastic polyether ether ketone (PEEK) and cellulose were sulfonated and cross-linked. The membranes were prepared by sol-gel casting method with different amount of cross-linking reagent. In conclusion, the composite membranes I, II, III showed improved thermostability, tensile strength and oxidative durability. Proton conductivity of the membranes was also improved and the composite membrane I showed 0.1312 S/cm at $80^{\circ}C$ which was the best of those composite membranes.