• Title/Summary/Keyword: Cross-flow type

Search Result 301, Processing Time 0.029 seconds

PIV 유동 계측을 통한 천장형 실내기의 최적 제어 설계 (Optimal Flow Control of Ceiling Type Indoor Unit by PIV Measurements)

  • 성재용;안광협;이기섭;최호선;이인섭
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1042-1050
    • /
    • 2003
  • A heating flow discharged from a 4-way ceiling type indoor unit has been investigated to determine the design parameters for the optimal flow control. The flow was measured by a PIV(particle image velocimetry) system and an experimental model of 1/10 scale with a transparent room was devised by satisfying the Archimedes number. This similarity is generally used in cases where the forced convection has similar magnitude of the natural convection. To optimize the heating flow, several vane angles and vane control algorithms of cross and right angle controls were considered. Regarding the vane angle, experimental results show that 30$^{\circ}$is an optimal angle to avoid re-suction flows without significant increase in flow noise. Temperature distribution measured in the environmental chamber ensures the increased thermal comfort when compared to the case, 60$^{\circ}$angle. At the optimal angle, applying open/close control gives rise to more uniform distribution of the heating flow than without control. Especially, the cross-control seems to be satisfactory for thermal comfort.

입구 개방형 덕트를 적용한 초저낙차 횡류수차의 성능향상 (Performance Improvement of Very Low Head Cross Flow Turbine with Inlet Open Duct)

  • 천쩐무;패트릭 마크 싱;최영도
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.30-39
    • /
    • 2014
  • The cross flow turbine is economical because of its simple structure. For remote rural region, there are needs for a more simple structure and very low head cross flow turbines. However, in this kind of locations, the water from upstream always flows into the turbine with some other materials such as sand and pebble. These materials will be damage to the runner blade and shorten the turbine lifespan. Therefore, there is a need to develop a new type of cross flow turbine for the remote rural region where there is availability of abundant resources. The new design of the cross flow turbine has an inlet open duct, without guide vane and nozzle to simplify the structure. However, the turbine with inlet open duct and very low head shows relatively low efficiency. Therefore, the purpose of this study is to optimize the shape of the turbine inlet to improve the efficiency, and investigate the internal flow of a very low head cross flow turbine. There are two steps to optimize the turbine inlet shape. Firstly, by changing the turbine open angle along with changing the turbine inlet open duct bottom line (IODBL) location to investigate the internal flow. Secondly, keeping the turbine IODBL location at the maximum efficiency achieved at the first step, and changing the turbine IODBL angle to improve the performance. The result shows that there is a 7.4% of efficiency improvement by optimizing turbine IODBL location (open angle), and there is 0.3% of efficiency improvement by optimizing the turbine IODBL angle.

비정상 점성 유동 해석에 의한 부등피치 횡류홴의 이산소음 주파수 변조 특성 예측 (Prediction of Frequency Modulation of Discrete Noise for Random Pitch Cross-Flow Fans by Unsteady Viscous Flow Computations)

  • 조용;문영준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.658-664
    • /
    • 2002
  • Unsteady flow characteristics and associated blade tonal noise of a cross-flow fan are predicted by a computational method. The incompressible Navier-Stokes equations are time-accurately solved for obtaining the pressure fluctuations between the rotating blades and the stabilizer, and sound pressure is predicted using Curie's equation. The computed fan performance is favorably compared with experimental data, and also indicates that the performance is not significantly altered by the random pitch effect at ${\phi}>0.4$. In the present study, the narrow-band noise characteristics of three impellers with a uniform and two random Pitch (type-A and-B) blades are compared by the SPL (Sound Pressure Level) spectra, and their frequency modulation characteristics of the BPF (Blade Passing Frequency) noise are also discussed.

  • PDF

상용 CFD코드를 이용한 횡류홴 공력소음 특성 해석 (Analysis of the aeroacoustic characteristics of cross-flow fan using commercial CFD code)

  • Jeon, Wan-Ho;Gi, Jeong-Mun
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.334.1-334
    • /
    • 2002
  • In this study, a cross-flow fan system used in indoor unit of the split-type air conditioner is analyzed by computational simulation. A commercial CFD code - Fluent - is used to calculate the performance and its unsteady flow characteristics. The unsteady incompressible Wavier-Stokes equations are solved using a sliding mesh technique on the interface between rotating fan region and the outside. The acoustic pressure is calculated by using Ffowcs-Williams and Hawkings equation. (omitted)

  • PDF

스태빌라이져 위치 및 리어가이더 형상변화에 따른 횡류홴의 성능특성 연구 (Performance of a Cross-Flow Fan with Various Stabilizer Positions and Rearguider Shapes)

  • 김동원;김형섭;윤태석;박성관;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제7권4호
    • /
    • pp.7-15
    • /
    • 2004
  • The design point of the cross-flow fan is generally based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between $30\%$ and $40\%$ because of relative high impact loss. The purpose of this study is to research the reciprocal relation among each parameter. Experiments and numerical analyses are conducted on effects of a stabilizer and a rearguider on performance analysis of a cross-flow fan. Two-dimensional, unsteady governing equations are solved using FVM, PISO algorithm, sliding grid system and standard $k-{\epsilon}$ turbulence model. Experiments are also carried out to estimate the performance of the modeled cross-flow fan. It is clarified that the rearguider of Archimedes type has excellent results for the most part.

다중블록실험과 전산유체해석을 통한 블록형 초고온가스로의 노심우회유량 평가 (ASSESSMENT of CORE BYPASS FLOW IN A PRISMATIC VERY HIGH TEMPERATURE REACTOR BY USING MULTI-BLOCK EXPERIMENT and CFD ANALYSIS)

  • 윤수종;이정훈;김민환;박군철
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.95-103
    • /
    • 2011
  • In the block type VHTR core, there are inevitable gaps among core blocks for the installation and refueling of the fuel blocks. These gaps are called bypass gap and the bypass flow is defined as a coolant flows through the bypass gap. Distribution of core bypass flow varies according to the reactor operation since the graphite core blocks are deformed by the fast neutron irradiation and thermal expansion. Furthermore, the cross-flow through an interfacial gap between the stacked blocks causes flow mixing between the coolant holes and bypass gap, so that complicated flow distribution occurs in the core. Since the bypass flow affects core thermal margin and reactor efficiency, accurate prediction and evaluation of the core bypass flow are very important. In this regard, experimental and computational studies were carried out to evaluate the core bypass flow distribution. A multi-block experimental apparatus was constructed to measure flow and pressure distribution. Multi-block effect such as cross flow phenomenon was investigated in the experiment. The experimental data were used to validate a CFD model foranalysis of bypass flow characteristics in detail.

Si 입자를 함유한 반도체 세정폐수의 한외여과 특성[I] -Polysulfone 평판막에 의한 투과분리- (Permeation Behavior of Semiconductor Rinsing Wastewater Containing Si Particles in Ultrafiltration System -I. Permeation Characteristics of Polysulfone Flat Plate Membrane-)

  • 곽순철;이석기;전재홍;남석태;최호상
    • 멤브레인
    • /
    • 제8권2호
    • /
    • pp.102-108
    • /
    • 1998
  • 본 연구는 Si 미립자를 함유한 반도체 세정폐수의 평판막을 이용한 한외여과특성을 검토하였다. 평판막의 투과유속은 시간이 경과함에 따라 점차 감소하는 경향을 나타냈으며, 이현상은 막표면에 형성된 케익층의 증가 및 기공막힘에 기인한다. 흐름형태에 따른 투과유속은 cross flow가 dead-end flow의 약 1.4배 높았다. Si 미립자에 의한 막오염을 제거하는데는 역세법이 sweeping법 보다 우수하였다. 막오염으로 인한 투과유속의 감소는 질소가스로 역세척하여 초기투과유속의 약 85% 정도 회복되었다. 평판막을 이용한 cross flow 공정의 용질배제율은 약 90%였으며, 투과수증의 Si 미립자의 크기는 평균 70 nm였다.

  • PDF

난류충돌유동의 질량유량비에 따른 혼합유동구조에 관한 실험적 연구 (An Experimental Study on the Mixing Flow Structure of Turbulent Cross Flow with Respect to the Ratio of Mass Flow Rate)

  • 이대옥;노병준
    • 대한기계학회논문집
    • /
    • 제16권11호
    • /
    • pp.2150-2158
    • /
    • 1992
  • 본 연구에서는 복잡한 유동형태를 지닌 충돌분사류에 대한 유동특성을 연구하 기 위하여 단순화된 실험모델로써 형상이 동일한 두 원형분류의 충돌에 의한 충돌분류 의 혼합현상 및 유동구조 등을 질량유량비의 변화에 따라 유체역학적으로 구명하고자 하였으며, 본 연구 결과는 연소기관에서의 연소효율 증대 및 구조개선등의 공학적 응 용을 위한 기본자료로 활용하고, 이론적 연구에 의한 난류의 유동구조 및 유동특성 에 대한 타당성 입증과 이론적 모델의 보완을 위한 실험자료로 이용하고자 한다. 충돌유동에 영향을 미치는 주요인자는 노즐직경, 충돌각, 충돌질량유량비, 온도, 밀도 등이며, 이 인자들 중에서 충돌질량유량비와 출돌각이 충돌후 형성되는 난류혼합유동 에 지배적인 영향을 미치므로, 본 연구에서는 두 원형분류의 충돌질량유량비를 가변할 수 있는 장치를 고안하였으며, 두 분류의 충돌각을 45˚로 고정하고, 고속측과 저속측 노즐의 질량유량비를 1.0, 0.8, 0.6, 0.4로 설정하여 질량유량비에 따른 혼합 유동구 조의 구명을 위한 실험적인 연구를 수행하였다. 충돌후의 혼합유동의 특성을 연구하 기 위하여 유동중심궤적, 유동반폭, 유동단면, 2차원 및 3차원 유동장, 평균속도분포 등을 온라인 컴퓨터시스템을 이용하여 측정분석하였다.

축소-확대 유로에 적용한 횡류형 수직 풍력발전시스템의 개발 (Development of a Cross-flow Type Vertical Wind Power Generation System for Electric Energy Generation Using Convergent-Divergent Duct)

  • 정상훈;정광섭;김철호
    • 설비공학논문집
    • /
    • 제23권8호
    • /
    • pp.543-548
    • /
    • 2011
  • New concept of wind energy conversion system is proposed to increase the energy density at a given working space. The quality of wind for wind power generation is depend on its direction and speed. However, the quality is not good on land because wind direction is changeable all the time and the speed as well. The most popularly operated wind turbine system is an axial-flow free turbine. But its conversion efficiency is less than 30% and even less than 20% considering the operating time. In this research, a cross-flow type wind turbine system is proposed with a convergent-divergent duct system to accelerate the low speed wind at the inlet of the wind turbine. Inlet guide vane is also introduced to the wind turbine system to have continuous power generation under the change of wind direction. In here, the availability of wind energy generation is evaluated with the change of the size of the inlet guide vane and the optimum geometry of the turbine impeller blade was found for the innovative wind power generation system.

Hardy-Cross법을 이용한 $CO_2$ 냉동기용 내부열교환기의 열전달 특성 연구 (Analysis of Heat Transfer Characteristics of Internal Heat Exchanger for $CO_2$ Refrigerator using the Hardy-Cross Method)

  • 강희동;김욱중;서태범
    • 설비공학논문집
    • /
    • 제17권1호
    • /
    • pp.1-7
    • /
    • 2005
  • The heat transfer characteristics of an internal heat exchanger for $CO_2$ refrigeration cycle are numerically investigated. The numerical model is verified using the published experimental results for the concentric tube type internal heat exchanger. The Hardy-Cross Method gives very good agreement between the calculation and experimental results on the heat transfer rates and exit temperatures. Also, appropriate combination of heat transfer correlations is found. The operating parameters of the heat exchanger are calculated at transcritical region of $CO_2.$ The heat transfer rate of the counter flow type heat exchanger shows the $32\%$ greater than that of the parallel flow type heat exchanger. The increase of heat exchanger length enhances the heat transfer rate. The thermodynamic characteristics and heat transfer coefficient of $CO_2$ in the internal heat exchanger are estimated.