Abstract
The design point of the cross-flow fan is generally based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between $30\%$ and $40\%$ because of relative high impact loss. The purpose of this study is to research the reciprocal relation among each parameter. Experiments and numerical analyses are conducted on effects of a stabilizer and a rearguider on performance analysis of a cross-flow fan. Two-dimensional, unsteady governing equations are solved using FVM, PISO algorithm, sliding grid system and standard $k-{\epsilon}$ turbulence model. Experiments are also carried out to estimate the performance of the modeled cross-flow fan. It is clarified that the rearguider of Archimedes type has excellent results for the most part.