• Title/Summary/Keyword: Cross-coupling error

Search Result 48, Processing Time 0.023 seconds

A Study on Synchronization Control Technique of Dual-Servo Press System (듀얼 서보모터 구동형 프레스 시스템의 동기화 제어기법 연구)

  • Na, Sang-Gun;Kwon, O-Shin;Kang, Jae-Hoon;Heo, Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.206-215
    • /
    • 2013
  • In this paper, a synchronization control technique of dual-servo motor driven press system is proposed. An independent cascade PID control technique has been applied to the conventional press system for advancement of control stability. However, it is not easy to reduce synchronous error using the independent cascade PID control technique when some different load disturbances are involved in each motor. The eccentric error of the slide caused by the problem degrade the control performance of the BDC(Bottom Dead Center). In order to achieve reduction of the synchronous error between two servo motors and accurate position control simultaneously, a new control scheme comprised with cascade PID control loop and cross-coupling loop is proposed. In simulation using Matlab SIMULINK, the AC servo system is designed. The control performance of proposed technique is compared with conventional control technique to the model of AC servo system. Also, the sub-scale model of dual-servo motor driven press system which can replicate the slide motion is constructed for experimental verification for the performance of the proposed control technique. The cross-coupling control technique reveals more precise and stable performances in the position and synchronization controls.

Design of Gain Controller of Decoupling Control of Grid-connected Inverter with LCL Filter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.124-126
    • /
    • 2008
  • Grid Connected inverter is produced current to deliver power to grid. To provide low THD current, LCL filters is effective to filter high frequency component of current output from inverter. To provide sinusoidal waveform, there are many researchers have been proposed several controllers for grid-connected inverter controllers. Synchronous Reference Frame (SRF)-based controller is the most popular methods. SRF-based controller is capable for reducing both of zero-steady state error and phase delay. But SRF based controller is contained cross-coupling components, which generate some difficulties to analyze. In this paper, SRF based controller is analyzed. By applying decoupling control, cross-coupling component is eliminated and single phase model of the system is obtained. Through this single phase model, gain controller is designed. To reduce steady state error, proportional gain is set as high as possible, but it may produce instability. To compromise between a minimum steady state error and stability, the single phase model is evaluate through Root Locus and Bode diagram. PSIM simulation is used to verify the analysis.

  • PDF

Design of a Six Axis Force-Torque Sensor with a Cross-Shaped Structure (십자형 구조를 가진 6축 힘.토크센서의 설계)

  • Kim, Do-Seok;Yoon, Jun-Ho;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.59-64
    • /
    • 2001
  • The necessity of six axis force-torque sensors have been increased in the field of automatic assembly, polishing and deburing using robotic manipulator recently. This paper presents a simple and compact elastic structure design of the six axis force-torque sensor with a cross-shaped structure and the expected deflection value was induced by theoretical method to design a six axis force-torque sensor and then this theoretical method was verified by comparing with the results using the Finite Element Method(FEM).

  • PDF

Analysis on Parameter Estimation Error of Permanent Magnet Synchronous Machine(PMSM) Considering Cross Coupling Effect (교차 결합 현상에 의한 영구자석 동기전동기의 제정수 추정 오차 분석)

  • Chung, Euihoon;Ha, Jung-Ik
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.101-102
    • /
    • 2016
  • 영구자석 동기전동기(PMSM)의 효율적인 구동을 위해 전동기의 제정수를 실시간으로 정확하게 추정하는 것이 매우 중요하다. 대부분의 전동기 제정수 추정 기법은 전동기의 교차 결합 현상(Cross coupling effect)을 고려하지 않은 전동기 모델을 이용한다. 본 논문에서는 영구자석 동기전동기에서 기존의 제정수 추정 기법을 적용할 경우 교차 결합 현상에 의해 발생하는 제정수의 추정 오차를 수학적으로 분석하고 이를 시뮬레이션을 통해 검증하였다.

  • PDF

Covariance analysis of strapdown INS considering characteristics of gyrocompass alignment errors (자이로 컴파스 얼라인먼트 오차특성을 고려한 스트랩다운 관성항법장치의 상호분산해석)

  • 박흥원;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.34-39
    • /
    • 1993
  • Presented in this paper is a complete error covariance analysis for strapdown inertial navigation system(SDINS). We have found that in SDINS the cross-coupling terms in gyrocompass alignment errors can significantly influence the SDINS error propagation. Initial heading error has a close correlation with the east component of gyro bias erro, while initial level tilt errors are closely related to accelerometer bias errors. In addition, pseudo-state variables are introduced in covariance analysis for SDINS utilizing the characteristics of gyrocompass alignment errors. This approach simplifies the covariance analysis because it makes the initial error covariance matrix to a diagonal form. Thus a real implementation becomes easier. The approach is conformed by comparing the results for a simplified case with the covariance analysis obtained from the conventional SDINS error model.

  • PDF

Vibration-Robust Attitude and Heading Reference System Using Windowed Measurement Error Covariance

  • Kim, Jong-Myeong;Mok, Sung-Hoon;Leeghim, Henzeh;Lee, Chang-Yull
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.555-564
    • /
    • 2017
  • In this paper, a new technique for attitude and heading reference system (AHRS) using low-cost MEMS sensors of the gyroscope, accelerometer, and magnetometer is addressed particularly in vibration environments. The motion of MEMS sensors interact with the scale factor and cross-coupling errors to produce random errors by the harsh environment. A new adaptive attitude estimation algorithm based on the Kalman filter is developed to overcome these undesirable side effects by analyzing windowed measurement error covariance. The key idea is that performance degradation of accelerometers, for example, due to linear vibrations can be reduced by the proposed measurement error covariance analysis. The computed error covariance is utilized to the measurement covariance of Kalman filters adaptively. Finally, the proposed approach is verified by using numerical simulations and experiments in an acceleration phase and/or vibrating environments.

A Study on The Synchronous Control of Dual Electric Propulsion System Based on the Coupling Structure (커플링구조에 기초한 전기추진시스템의 동기제어에 관한 연구)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.349-356
    • /
    • 2018
  • In this study, the synchronous control system is designed to restrain the speed difference generated between two propellers, namely, synchronous error in a dual electric propulsion system of unmanned surface vehicle, fish finder boat, etc. The control system based on coupling structure is composed of pre-filters and speed controllers for each propulsion system and a synchronous controller cross-coupled between two propulsion systems. The pre-filter and speed controller are designed in order that the propulsion system may follow the speed reference without overshoot and input saturation. And the synchronous controller is designed in consideration of damping and quickness of the synchronous controller system after analyzing effect of the skew disturbance and mismatched dynamic characteristics on synchronous error. Finally, the simulation results show that the designed control system is effective for elimination of synchronous error.

An RMRAC Controller for Permanent Magnet Synchronous Motor Based On Modified Current Dynamics (보정된 전류동역학에 기반한 영구자석 전동기의 참조모델 강인적응제어기)

  • Jin, Hong-Zhe;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.991-997
    • /
    • 2008
  • A new RMRAC scheme far the PMSM current regulation is proposed in a synchronous frame, which is completely free from the parameter's uncertainty. A current regulator of PMSM is the inner most loop of electromechanical driving systems and plays a foundation role in the control hierarchy. When the PMSM runs in high speed, the cross-coupling terms must be compensated precisely for large system BW. In the proposed RMRAC, the input signal is composed of a calculated voltage defined by MRAC law and an output of the disturbance compensator. The gains of feed forward and feedback controller are estimated by the proposed modified gradient method, where the system disturbances are assumed as filtered current regulation errors. After the compensation of the system disturbance from error information, the corresponding voltage is fed forward to control input to compensate for real disturbances. The proposed method robustly compensates the system disturbance and cross-coupling terms. It also shows a good realtime performance due to the simplicity of control structure. Through real experiments, the efficiency of the proposed method is verified.

Implementation of a Waveguide Cross Guide directional Coupler for Ku-Band using Polynomial Approximations for the Polarizabilities of the Rounded End Slot (끝이 둥근 슬롯의 분극률에 대한 다항 근사식을 이용한 Ku-Band용 도파관 십자형 방향성 결합기 제작)

  • 유경완;이재현;박광량;김재명
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.8
    • /
    • pp.7-15
    • /
    • 1994
  • In this paper, the directional coupler for Ku-band, which is designed is of the crossguide type with a coupling value of about 3-dB. The apertures chosen for this design are crosses. We used polynomial approximations of rounded end slot to obtain the electric and magnetic polarizability of crossed-slot and compared the results with Cohn's experimental results. The optimized dimensions and positions of the cross aperture are obtained by a trial-and-error reiteration of the program. This paper presents the measurement results for the designed coupler. The very flat coupling shows a total variation of only 29.80$\pm$0.04dB for the design frequency ranges of 12.25GHz-12.75GHz. The measured minimum directivity is 25dB. The aperture attenuation for the finite diaphragm thickness is about 2dB pr 0.5mm, which is in agreement with the theoretical value. The transmission loss and input return loss at center frequency are 0.0564dB and 48.16dB respectively. We obtained the measured minimum directivity of the coupler. Whose apertures are both circles is better than that containing holes in the performance of directivity.

  • PDF