• Title/Summary/Keyword: Cross-Validation Approach

Search Result 130, Processing Time 0.024 seconds

Efficient Malware Detector for Android Devices (안드로이드 모바일 단말기를 위한 효율적인 악성앱 감지법)

  • Lee, Hye Lim;Jang, Soohee;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.4
    • /
    • pp.617-624
    • /
    • 2014
  • Smart phone usage has increased exponentially and open source based Android OS occupy significant market share. However, various malicious applications that use the characteristic of Android threaten users. In this paper, we construct an efficient malicious application detector by using the principle component analysis and the incremental k nearest neighbor algorithm, which consider an required permission, of Android applications. The cross validation is exploited in order to find a critical parameter of the algorithm. For the performance evaluation of our approach, we simulate a real data set of Contagio Mobile.

User Satisfaction Models Based on a Fuzzy Rule-Based Modeling Approach (퍼지 규칙 기반 모델링 기법을 이용한 감성 만족도 모델 개발)

  • Park, Jungchul;Han, Sung H.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.3
    • /
    • pp.331-343
    • /
    • 2002
  • This paper proposes a fuzzy rule-based model as a means to build usability models between emotional satisfaction and design variables of consumer products. Based on a subtractive clustering algorithm, this model obtains partially overlapping rules from existing data and builds multiple local models each of which has a form of a linear regression equation. The best subset procedure and cross validation technique are used to select appropriate input variables. The proposed technique was applied to the modeling of luxuriousness, balance, and attractiveness of office chairs. For comparison, regression models were built on the same data in two different ways; one using only potentially important variables selected by the design experts, and the other using all the design variables available. The results showed that the fuzzy rule-based model had a great benefit in terms of the number of variables included in the model. They also turned out to be adequate for predicting the usability of a new product. Better yet, the information on the product classes and their satisfaction levels can be obtained by interpreting the rules. The models, when combined with the information from the regression models, are expected to help the designers gain valuable insights in designing a new product.

Effect of rigid connection to an asymmetric building on the random seismic response

  • Taleshian, Hamed Ahmadi;Roshan, Alireza Mirzagoltabar;Amiri, Javad Vaseghi
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.183-200
    • /
    • 2020
  • Connection of adjacent buildings with stiff links is an efficient approach for seismic pounding mitigation. However, use of highly rigid links might alter the torsional response in asymmetric plans and although this was mentioned in the literature, no quantitative study has been done before to investigate the condition numerically. In this paper, the effect of rigid coupling on the elastic lateral-torsional response of two adjacent one-story column-type buildings has been studied by comparison to uncoupled structures. Three cases are considered, including two similar asymmetric structures, two adjacent asymmetric structures with different dynamic properties and a symmetric system adjacent to an adjacent asymmetric one. After an acceptable validation against the actual earthquake, the traditional random vibration method has been utilized for dynamic analysis under Ideal white noise input. Results demonstrate that rigid coupling may increase or decrease the rotational response, depending on eccentricities, torsional-to-lateral stiffness ratios and relative uncoupled lateral stiffness of adjacent buildings. Results are also discussed for the case of using identical cross section for all columns supporting eachplan. In contrast to symmetric systems, base shear increase in the stiffer building may be avoided when the buildings lateral stiffness ratio is less than 2. However, the eccentricity increases the rotation of the plans for high rotational stiffness of the buildings.

Facial Age Estimation Using Convolutional Neural Networks Based on Inception Modules (인셉션 모듈 기반 컨볼루션 신경망을 이용한 얼굴 연령 예측)

  • Sukh-Erdene, Bolortuya;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1224-1231
    • /
    • 2018
  • Automatic age estimation has been used in many social network applications, practical commercial applications, and human-computer interaction visual-surveillance biometrics. However, it has rarely been explored. In this paper, we propose an automatic age estimation system, which includes face detection and convolutional deep learning based on an inception module. The latter is a 22-layer-deep network that serves as the particular category of the inception design. To evaluate the proposed approach, we use 4,000 images of eight different age groups from the Adience age dataset. k-fold cross-validation (k = 5) is applied. A comparison of the performance of the proposed work and recent related methods is presented. The results show that the proposed method significantly outperforms existing methods in terms of the exact accuracy and off-by-one accuracy. The off-by-one accuracy is when the result is off by one adjacent age label to the above or below. For the exact accuracy, the age label of "60+" is classified with the highest accuracy of 76%.

Cloud Attack Detection with Intelligent Rules

  • Pradeepthi, K.V;Kannan, A
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4204-4222
    • /
    • 2015
  • Cloud is the latest buzz word in the internet community among developers, consumers and security researchers. There have been many attacks on the cloud in the recent past where the services got interrupted and consumer privacy has been compromised. Denial of Service (DoS) attacks effect the service availability to the genuine user. Customers are paying to use the cloud, so enhancing the availability of services is a paramount task for the service provider. In the presence of DoS attacks, the availability is reduced drastically. Such attacks must be detected and prevented as early as possible and the power of computational approaches can be used to do so. In the literature, machine learning techniques have been used to detect the presence of attacks. In this paper, a novel approach is proposed, where intelligent rule based feature selection and classification are performed for DoS attack detection in the cloud. The performance of the proposed system has been evaluated on an experimental cloud set up with real time DoS tools. It was observed that the proposed system achieved an accuracy of 98.46% on the experimental data for 10,000 instances with 10 fold cross-validation. By using this methodology, the service providers will be able to provide a more secure cloud environment to the customers.

Prediction of phosphorylation sites using multiple kernel learning (다중 커널 학습을 이용한 단백질의 인산화 부위 예측)

  • Kim, Jong-Kyoung;Choi, Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.22-27
    • /
    • 2007
  • Phosphorylation is one of the most important post translational modifications which regulate the activity of proteins. The problem of predicting phosphorylation sites is the first step of understanding various biological processes that initiate the actual function of proteins in each signaling pathway. Although many prediction methods using single or multiple features extracted from protein sequences have been proposed, systematic data integration approach has not been applied in order to improve the accuracy of predicting general phosphorylation sites. In this paper, we propose an optimal way of integrating multiple features in the framework of multiple kernel learning. We optimally combine seven kernels extracted from sequence, physico-chemical properties, pairwise alignment, and structural information. Using the data set of Phospho. ELM, the accuracy evaluated by 5-fold cross-validation reaches 85% for serine, 85% for threonine, and 81% for tyrosine. Our computational experiments show significant improvement in the performance of prediction relative to a single feature, or to the combined feature with equal weights. Moreover, our systematic integration method significantly improves the prediction preformance compared with the previous well-known methods.

  • PDF

Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study

  • Ye, X.W.;Ding, Y.;Wan, H.P.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.733-744
    • /
    • 2019
  • Wind speed forecasting is critical for a variety of engineering tasks, such as wind energy harvesting, scheduling of a wind power system, and dynamic control of structures (e.g., wind turbine, bridge, and building). Wind speed, which has characteristics of random, nonlinear and uncertainty, is difficult to forecast. Nowadays, machine learning approaches (generalized regression neural network (GRNN), back propagation neural network (BPNN), and extreme learning machine (ELM)) are widely used for wind speed forecasting. In this study, two schemes are proposed to improve the forecasting performance of machine learning approaches. One is that optimization algorithms, i.e., cross validation (CV), genetic algorithm (GA), and particle swarm optimization (PSO), are used to automatically find the optimal model parameters. The other is that the combination of different machine learning methods is proposed by finite mixture (FM) method. Specifically, CV-GRNN, GA-BPNN, PSO-ELM belong to optimization algorithm-assisted machine learning approaches, and FM is a hybrid machine learning approach consisting of GRNN, BPNN, and ELM. The effectiveness of these machine learning methods in wind speed forecasting are fully investigated by one-year field monitoring data, and their performance is comprehensively compared.

A hierarchical Bayesian model for spatial scaling method: Application to streamflow in the Great Lakes basin

  • Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.176-176
    • /
    • 2018
  • This study presents a regional, probabilistic framework for estimating streamflow via spatial scaling in the Great Lakes basin, which is the largest lake system in the world. The framework follows a two-fold strategy including (1) a quadratic-programming based optimization model a priori to explore the model structure, and (2) a time-varying hierarchical Bayesian model based on insights found in the optimization model. The proposed model is developed to explore three innovations in hierarchical modeling for reconstructing historical streamflow at ungaged sites: (1) information of physical characteristics is utilized in spatial scaling, (2) a time-varying approach is introduced based on climate information, and (3) heteroscedasticity in residual errors is considered to improve streamflow predictive distributions. The proposed model is developed and calibrated in a hierarchical Bayesian framework to pool regional information across sites and enhance regionalization skill. The model is validated in a cross-validation framework along with four simpler nested formulations and the optimization model to confirm specific hypotheses embedded in the full model structure. The nested models assume a similar hierarchical Bayesian structure to our proposed model with their own set of simplifications and omissions. Results suggest that each of three innovations improve historical out-of-sample streamflow reconstructions although these improvements vary corrsponding to each innovation. Finally, we conclude with a discussion of possible model improvements considered by additional model structure and covariates.

  • PDF

Use of a Machine Learning Algorithm to Predict Individuals with Suicide Ideation in the General Population

  • Ryu, Seunghyong;Lee, Hyeongrae;Lee, Dong-Kyun;Park, Kyeongwoo
    • Psychiatry investigation
    • /
    • v.15 no.11
    • /
    • pp.1030-1036
    • /
    • 2018
  • Objective In this study, we aimed to develop a model predicting individuals with suicide ideation within a general population using a machine learning algorithm. Methods Among 35,116 individuals aged over 19 years from the Korea National Health & Nutrition Examination Survey, we selected 11,628 individuals via random down-sampling. This included 5,814 suicide ideators and the same number of non-suicide ideators. We randomly assigned the subjects to a training set (n=10,466) and a test set (n=1,162). In the training set, a random forest model was trained with 15 features selected with recursive feature elimination via 10-fold cross validation. Subsequently, the fitted model was used to predict suicide ideators in the test set and among the total of 35,116 subjects. All analyses were conducted in R. Results The prediction model achieved a good performance [area under receiver operating characteristic curve (AUC)=0.85] in the test set and predicted suicide ideators among the total samples with an accuracy of 0.821, sensitivity of 0.836, and specificity of 0.807. Conclusion This study shows the possibility that a machine learning approach can enable screening for suicide risk in the general population. Further work is warranted to increase the accuracy of prediction.

Machine Learning Methods for Trust-based Selection of Web Services

  • Hasnain, Muhammad;Ghani, Imran;Pasha, Muhammad F.;Jeong, Seung R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.38-59
    • /
    • 2022
  • Web services instances can be classified into two categories, namely trusted and untrusted from users. A web service with high throughput (TP) and low response time (RT) instance values is a trusted web service. Web services are not trustworthy due to the mismatch in the guaranteed instance values and the actual values achieved by users. To perform web services selection from users' attained TP and RT values, we need to verify the correct prediction of trusted and untrusted instances from invoked web services. This accurate prediction of web services instances is used to perform the selection of web services. We propose to construct fuzzy rules to label web services instances correctly. This paper presents web services selection using a well-known machine learning algorithm, namely REPTree, for the correct prediction of trusted and untrusted instances. Performance comparison of REPTree with five machine learning models is conducted on web services datasets. We have performed experiments on web services datasets using a ten k-fold cross-validation method. To evaluate the performance of the REPTree classifier, we used accuracy metrics (Sensitivity and Specificity). Experimental results showed that web service (WS1) gained top selection score with the (47.0588%) trusted instances, and web service (WS2) was selected the least with (25.00%) trusted instances. Evaluation results of the proposed web services selection approach were found as (asymptotic sig. = 0.019), demonstrating the relationship between final selection and recommended trust score of web services.