• 제목/요약/키워드: Cross-Section

검색결과 4,755건 처리시간 0.031초

Analysis of concrete-filled steel tubular columns with "T" shaped cross section (CFTTS)

  • Wang, Qin-Ting;Chang, Xu
    • Steel and Composite Structures
    • /
    • 제15권1호
    • /
    • pp.41-55
    • /
    • 2013
  • This paper presents a numerical study of axially loaded concrete-filled steel tubular columns with "T" shaped cross section (CFTTS) based on the ABAQUS standard solver. Two types of columns with "T" shaped cross section, the common concrete-filled steel tubular columns with "T" shaped cross section (CCFTTS) and the double concrete-filled steel tubular columns with "T" shaped cross section (DCFTTS), are discussed. The failure modes, confining effects and load-displacement curves are analyzed. The numerical results indicate that both have the similar failure mode that the steel tubes are only outward buckling on all columns' faces. It is found that DCFTTS columns have higher axial capacities than CCFTTS ones duo to the steel tube of DCFTTS columns can plays more significant confining effect on concrete. A parametric study, including influence of tube thickness, concrete strength and friction coefficient of tube-concrete interface on the axial capacities is also carried out. Simplified formulae were also proposed based on this study.

회전 표적의 고주파수 후방산란단면적 해석 (High-frequency Back-scattering Cross Section Analysis of Rotating Targets)

  • 김국현;조대승;김진형
    • 한국군사과학기술학회지
    • /
    • 제10권3호
    • /
    • pp.16-24
    • /
    • 2007
  • The high-frequency analysis method of back-scattering cross section spectrum of rotating targets is established. The time history of the back-scattering cross section is calculated using a quasi-stationary approach, based on a physical optics and a physical theory of diffraction, combining an adaptive triangular beam method to consider the shadow effect. And the spectra of back-scattering cross section by the Doppler effect are analyzed applying a simple fast Fourier transform method to its time history. The numerical calculation for rotating targets, such as rotating metal plates and underwater propeller, are carried out. The time history appears to be periodic with respect to the number of wings. The backscattering cross section spectrum level and its frequency shift are dependent on the rotating speed, direction, and the shape of the targets.

미세 펀칭 형상이 적층형 안테나 특성에 미치는 영향 (Effect of the shape of the micro punching on the stacked antennas characteristics)

  • 홍주표;한재남;정형욱;윤성만
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.71-74
    • /
    • 2007
  • Substitution of the stacked antenna for the normally pressed antenna in the mobile phone was tried for the purpose of decreasing its size. However, reduced size resulted in the difficulties obtaining the targeted characteristics with the bandwidth over 70MHz. The cross-section of the vias in the low temperature co-firing ceramics process was studied to find out effects on the bandwidth characteristics. Circular and rectangular cross-section of the via beneath different types of antenna patterns were simulated. Better bandwidth characteristics were acquired for the larger diameter of the circular section and for the rectangular section as the cross-section area increased. From the viewpoint of the shape of the cross-section, rectangular area showed better characteristics than the circular area with the same longest length in the cross-section.

  • PDF

Image Analysis of the Luster of Fabrics with Modified Cross-section Fibers

  • Shin Kyung In;Kim Seong Hun;Kim Jong Jun
    • Fibers and Polymers
    • /
    • 제6권1호
    • /
    • pp.82-88
    • /
    • 2005
  • We have investigated the luster of modified cross-sectional fiber fabrics as one of the essential quality estimates for clothing development. We have confirmed an objective evaluation method, and have determined the experimental luster char­acteristics of modified cross-section fibers. The cross-section of the fibers in a fabric affects the appearance of a textile. We used the image analysis method to investigate the luster to determine the critical factors influencing the appearance of modi­fied cross-section fiber fabrics. For similarly structured textiles in a component fabric, clear differences were observed in the fabric weave, density, percentage, and total area of blobs, which is image region. Color played a decisive role in the luster of the textiles, and luster was not significantly influenced by the modified cross-section fabric weave. In addition, the degree of luster did not increase in the order plain to twill to satin for modified cross-sectional fiber fabrics. All the split-type microfi­bers exhibited higher numerical luster values (percentage of pixels, and number and total area of blobs) than sea-island microfibers did. The degree of luster of the modified cross-sectional fiber fabrics was not high at specular reflection angles.

사각형 단면을 가진 제품의 압출가공시 제품의 굽힘현상에 관한 연구 (Study on the curving phenomenon of rectangular shaped product in extrusion process)

  • 진인태;최재찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 추계학술대회논문집
    • /
    • pp.7-13
    • /
    • 1996
  • The kinematically admissible velocity field is developed for the analysis of extruded products. The curving of product in extrusion is caused by the linearly distributed longitudinal velocity on the cross-section of the workpiece at the die exit. In the analysis, the longitudinal velocity in extrusion direction is divided into the uniform velocity and the deviated velocity. In order to satisfy the requrement of the kinematically admissible velocity field, the average value of the deviated velocity should be zero. At the same time, it should linearly change with the distance form the center of gravity of the cross-section of the workpiece. The results of the analysis show that the curvature of product increses with increses in eccentricity of gravity center of the cross-section of workpiece at die entrance form that of the cross-section at the die exit. In the analysis, the longitudinal velocity in extrusion direction is divided into the uniform velocity and the deviated velocity. In order to satisfy the requrement of the kinematically admissible velocity field, the average value of the deviated velocity should be zero. At the same time, it should linearly change with the distance from the center of gravity of the cross-section of the workpiece. The results of the analysis show that the curvature of product increses with increses in ecentricity of gravity center of the cross-section of workpiece at die entrance from that of the cross-section at the die exit.

  • PDF

Development of multigroup cross section library generation system TPAMS

  • Lili Wen;Haicheng Wu;Ying Chen;Xiaoming Chai;Xiaofei Wu;Xiaolan Tu;Yuan Liu
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2208-2219
    • /
    • 2024
  • Kylin-2 is an advanced neutronics lattice code, developed by Nuclear Power Institute of China. High-precision multigroup cross section library is need for KYLIN-2 to carry out simulation of current pressurized water reactor (PWR) and advanced reactor. In this paper a multigroup cross section library generation system named TPAMS was developed, the methods in TPAMS dealing with resonance data such as subgroup parameters, lambda factor, resonance integral were discussed. Moreover, the depletion chain simplification method was studied. TPAMS can produce multigroup library in binary and ASIIC formats, including detailed data contents for resonance, transport and depletion calculations. A multigroup cross section library has been generated for KYLIN-2 based on TPAMS system. The multigroup cross section library was verified through the analysis of various criticality and burnup benchmarks, the values of multiplication factor and isotope density were compared with the experiment data. Numerical results demonstrate the accuracy of the multigroup cross section library and the reliability of the multigroup cross section library generation system TPAMS.

General Purpose Cross-section Analysis Program for Composite Rotor Blades

  • Park, Il-Ju;Jung, Sung-Nam;Kim, Do-Hyung;Yun, Chul-Yong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권2호
    • /
    • pp.77-85
    • /
    • 2009
  • A two-dimensional cross-section analysis program based on the finite element method has been developed for composite blades with arbitrary cross-section profiles and material distributions. The modulus weighted approach is used to take into account the non-homogeneous material characteristics of advanced blades. The CLPT (Classical Lamination Plate Theory) is applied to obtain the effective moduli of the composite laminate. The location of shear center for any given cross-sections are determined according to the Trefftz' definition while the torsion constants are obtained using the St. Venant torsion theory. A series of benchmark examples for beams with various cross-sections are illustrated to show the accuracy of the developed cross-section analysis program. The cross section cases include thin-walled C-channel, I-beam, single-cell box, NACA0012 airfoil, and KARI small-scale blades. Overall, a reasonable correlation is obtained in comparison with experiments or finite element analysis results.

Cross-section classification of elliptical hollow sections

  • Gardner, L.;Chan, T.M.
    • Steel and Composite Structures
    • /
    • 제7권3호
    • /
    • pp.185-200
    • /
    • 2007
  • Tubular construction is widely used in a range of civil and structural engineering applications. To date, the principal product range has comprised square, rectangular and circular hollow sections. However, hot-rolled structural steel elliptical hollow sections have been recently introduced and offer further choice to engineers and architects. Currently though, a lack of fundamental structural performance data and verified structural design guidance is inhibiting uptake. Of fundamental importance to structural metallic design is the concept of cross-section classification. This paper proposes slenderness parameters and a system of cross-section classification limits for elliptical hollow sections, developed on the basis of laboratory tests and numerical simulations. Four classes of cross-sections, namely Class 1 to 4 have been defined with limiting slenderness values. For the special case of elliptical hollow sections with an aspect ratio of unity, consistency with the slenderness limits for circular hollow sections in Eurocode 3 has been achieved. The proposed system of cross-section classification underpins the development of further design guidance for elliptical hollow sections.

NEUTRON INDUCED CROSS SECTION DATA FOR IR-191 AND IR-193

  • Lee, Yong-Deok;Lee, Young-Ouk
    • Nuclear Engineering and Technology
    • /
    • 제38권8호
    • /
    • pp.803-808
    • /
    • 2006
  • The neutron induced nuclear cross section data for Ir-191 and Ir-193 were calculated and evaluated from unresolved resonance energy to 20MeV. The energy-dependent optical model potential parameters were determined based on the experimental data and applied up to 20MeV. A spherical optical model, a statistical model in an equilibrium energy region, and a multistep direct and multistep compound model in a pre-equilibrium energy region were used in the calculations. The direct capture model enhanced the fast neutron capture in the pre-equilibrium energy. The theoretically calculated cross sections were compared with the experimental data and the evaluated files. The calculations were found to be in good agreement with the experiment data. The evaluated cross section results were compiled with the ENDF-6 format. The fast energy results will be merged with the resonance parts to create a full evaluation library. The improvement of the neutron-induced cross section data will contribute to an increase in the efficiency of the production of Ir-192 as a radiation source.

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.