• 제목/요약/키워드: Cross-Flow Turbine

검색결과 88건 처리시간 0.021초

Numerical Study of the blade dynamics for a cross-flow turbine

  • Sato Yuko;Kawamura Tetuya
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.230-231
    • /
    • 2003
  • Two and three-dimensional flows around a cross-flow wind turbine are investigated by the numerical simulation. The turbine studied in this paper has cylindrical shape with many small blades along its periphery. Incompressible Navier-Stokes equation is used for this simulation. A rotating coordinate system, which rotates at the same speed of the turbine, is used in order to simplify the boundary conditions on the blades of the turbine. Additionally, a boundary fitted coordinate system is employed in order to express the shape of the blades precisely. A third order upwind scheme is chosen for the approximation of the non-linear terms. When the number of blades is about 10, the highest torque is obtained.

  • PDF

가스터빈/연료전지 혼합발전 시스템의 열교환기 설계 (Design of the recuperator for the gas turbine/fuel cell hybrid power generating system)

  • 곽재수;양수석;이대성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2105-2110
    • /
    • 2004
  • Plate-fin type recuperators for the gas turbine/fuel cell hybrid power generating system were designed using commercial design software, MUSE. Heat transfer efficiency and total pressure drop in the recuperator were calculated to confirm required recuperator performance. Both counter flow and cross flow type plate-fin recuperators were designed. Results show that the counter flow type has higher efficiency and short core length, but the cross flow type is simpler to construct because the cross flow type does not need additional distributors. Two or three headers for the each recuperator core will be designed and tested to evaluate best header design. The designed recuperators and headers which will be designed later will be constructed, tested, and used in gas turbine/fuel cell hybrid power generating system.

  • PDF

축소-확대 유로에 적용한 횡류형 수직 풍력발전시스템의 개발 (Development of a Cross-flow Type Vertical Wind Power Generation System for Electric Energy Generation Using Convergent-Divergent Duct)

  • 정상훈;정광섭;김철호
    • 설비공학논문집
    • /
    • 제23권8호
    • /
    • pp.543-548
    • /
    • 2011
  • New concept of wind energy conversion system is proposed to increase the energy density at a given working space. The quality of wind for wind power generation is depend on its direction and speed. However, the quality is not good on land because wind direction is changeable all the time and the speed as well. The most popularly operated wind turbine system is an axial-flow free turbine. But its conversion efficiency is less than 30% and even less than 20% considering the operating time. In this research, a cross-flow type wind turbine system is proposed with a convergent-divergent duct system to accelerate the low speed wind at the inlet of the wind turbine. Inlet guide vane is also introduced to the wind turbine system to have continuous power generation under the change of wind direction. In here, the availability of wind energy generation is evaluated with the change of the size of the inlet guide vane and the optimum geometry of the turbine impeller blade was found for the innovative wind power generation system.

유효낙차에 따른 80kW급 횡류수차의 성능 및 내부유동 해석 (Performance and Internal Flow Analysis on the 80kW-Class Cross-Flow Hydro Turbine with the Variation of Effective Head)

  • 최영도;임재익;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.703-710
    • /
    • 2010
  • 최근 신재생에너지 연구개발과 관련하여 소수력발전에 대한 관심이 높아지고 있지만, 기존의 대수력용 수차 시스템과는 달리 소수력에 적당한 수차의 설계법이 아직 확립되어 있지 않기 때문에 고성능의 소수력용 수차의 개발이 요구되고 있다. 그러나, 복잡한 터빈의 구조에 의한 상대적으로 높은 제작단가는 소수력발전용 터빈의 개발에 큰 걸림돌로 작용하고 있다. 따라서, 본 연구에서는 수차의 형상이 상대적으로 간단하고 소수력자원에 적용하기가 용이한 80kW급 횡류형 수차에 대하여 유효낙차 변화에 따른 성능 및 내부유동에 대해서 검토하였다. 유효낙차가 증가함에 따라서 원주방향 및 반경방향 속도비가 증가하게 되며, 증가한 원주속도에 의해 각운동량이 증가하여 출력도 커지게 된다.

곡면 끝벽을 갖는 터빈 노즐 안내깃 캐스케이드내 3차원 유동장에 관한 실험적 연구 (Experimental Study on Effects of the Contoured Endwall on the Three-Dimensional Flow in a Turbine Nozzle Guide Vane Cascade)

  • 윤원남;정진택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1975-1980
    • /
    • 2004
  • The three-dimensional flow in a turbine nozzle guide vane passage causes large secondary loss through the passage and increased heat transfer on the blade surface. In order to reduce or control these secondary flows, a linear cascade with a contoured endwall configuration was used and changes in the three-dimensional flow field were analyzed and discussed. Measurements of secondary flow velocity and total pressure loss within the passage have been performed by means of five-hole probes. The investigation was carried out at fixed exit Reynolds number of $4.0{\times}10^5$. The objective of this study is to document the development of the three-dimensional flow in a turbine nozzle guide vane cascade with modified endwall. The results show that the development of passage vortex and cross flow in the cascade composed of one flat and one contoured endwalls are affected by the flow acceleration which occurs in contoured endwall side. The overall loss is reduced near the flat endwall rather than contoured endwall.

  • PDF

50kW급 횡류수차 내 공기 유입이 성능에 미치는 영향 (Effect of air inflow on the performance of a 50kW-class cross-flow turbine)

  • 김준호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.418-423
    • /
    • 2014
  • 최근 소수력 발전은 화석에너지의 고갈 및 환경 문제를 해결할 수 있는 대안으로 우리나라 뿐만 아니라 세계 각국이 심혈을 기울이고 있다. 본 연구에서는 소수력 발전의 최적화를 위해 입지 조건 및 특성을 고려하여 저 중낙차 및 유량 변동이 심한 지역에 적합하도록 2개의 가이드 베인을 갖는 횡류수차를 개발하여 실증시험을 실시하였다. 또한 CFD를 이용한 선행 연구 결과를 바탕으로 하여 수차 입구단의 낙차를 일정하게 유지한 상태에서 공기 유입 및 밸브 위치에 따른 성능 변화를 검증하였다. 그 결과 공기 유입이 재순환 유동과 러너를 통과한 유체가 주축에 충돌하면서 발생하는 수력학적 손실을 최소화시킬 수 있어 수차의 성능과 효율 개선에 효과적임을 검증할 수 있었다.

Effect of Venturi System on Acceleration of Low-speed Water Flow at the Venturi Throat Installed at the Inlet of Hydro Turbine

  • Jung, Sang-Hoon;Seo, In-Ho;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.914-920
    • /
    • 2011
  • For a hydro turbine electricity generation system in river or bay, a venturi system could be applied to accelerate flow speed at the inlet of the turbine system in a flow field. In this study, a steady flow simulation was conducted to understand the effect of venturi system on the acceleration of current speed at the inlet of a hydro turbine system. According to the continuity equation, the flow speed is inversely proportional to the cross-section area in a conduit flow; however, it would be different in an open region because the venturi system would be an obstruction in the flow region. As the throat area is 1/5 of the inlet area of the venturi, the flow velocity is accelerated up to 2.1 times of the inlet velocity. It is understood that the venturi system placed in an open flow region gives resistance to the upcoming flow and disperses the flow energy around the venturi system. The result of the study should be very important information for an optimum design of a hydro turbine electricity generation system.

횡류형 터빈을 적용한 수직축 풍력발전시스템의 성능평가를 위한 실험 연구 (An Experimental Study for the Performance Analysis of a Vertical-type Wind Power Generation System with a Cross-flow Wind Turbine)

  • 조현성;정광섭;김철호
    • 한국산학기술학회논문지
    • /
    • 제15권3호
    • /
    • pp.1272-1278
    • /
    • 2014
  • 본 최근 성장하고 있는 해상 풍력의 실험연구에서 풍동시험이 수직형 횡류 풍력발전시스템의 성능을 조사하기 위해 실시되었다. 풍동의 시험 부분은 제한된 크기로 인해 실제 풍력 발전의 입구 안내 베인을 약 1/5로 축소시켰고, 터빈 임펠러의 지름을 모형 임펠러의 1/2로 감소시켰다. 임펠러 블레이드 갯수는 풍력 발전 시스템의 출력에 대한 또 다른 중요한 변수이기 때문에 8개와 16개로 변경하여 시험하였다. 실험 분석 결과, 모형 풍력 터빈의 출력 제동력은 정격 풍속 12m/s에서 블레이드 갯수가 8개 보다 16개일 때 82% 출력이 증가된 278와트로 측정되었고, 정격 제동력은 정격 작동 조건에서 3.9kW로 계산되었다.

1단 축류 가스터빈내 동익의 허브면에 장착된 경계층 펜스의 효과에 대한 수치 해석적 연구 (Numerical Analysis on Effects of the Boundary Layer Fence Equipped on the Hub of Rotor in the First Stage Axial Flow Gas Turbine)

  • 윤덕규;김재춘;김대현;이원석;정진택
    • 한국유체기계학회 논문집
    • /
    • 제12권2호
    • /
    • pp.8-16
    • /
    • 2009
  • The objective of this study is to investigate the three-dimensional turbulence flow characteristics of a rotor passage of an one-stage axial flow gas turbine and to investigate the effects of a boundary layer fence installed on the hub endwall of the rotor passage. Secondary flows occurring within the rotor passage (e.g. horseshoe vortex, passage vortex, and cross flow) cause secondary loss and reduce turbine efficiency. To control these secondary flows, a boundary layer fence measuring half the height of the thickness of the inlet boundary layer was installed on the hub endwall of the rotor passage. This study was performed numerically. The results show that the wake and secondary flows generated by the stator reduced the rotor load to constrain the development of cross flow and secondary flow reinforced by the rotor passage. In addition, the secondary vortices occurring within the rotor passage were reduced by the rotation of the rotor. Although, the boundary layer fence induced additional vortices, giving rise to an additional loss of turbine, its presence was shown to reduce the total pressure loss when compared to effects of the case without fence regardless of the relative position of blades by enervating secondary vortices occurred within the rotor passage.

비대칭 터빈 로터 실에 기인한 축 가진력 (Rotordynamic Forces Due to Rotor Sealing Gap in Turbines)

  • 김우준;송범호;송성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.545-548
    • /
    • 2002
  • Turbines have been known to be particularly susceptible to flow-induced self-excited vibration. In such vibrations, direct damping and cross stiffness effects of aerodynamic forces determine rotordynamic stability. In axial turbines with eccentric shrouded rotors, the non-uniform sealing gap causes azimuthal non-uniformities in the seal gland pressure and the turbine torque which destabilize the rotor system. Previously, research efforts focused solely on either the seal flow or the unshrouded turbine passge flow. Recently, a model for flow in a turbine with a statically offset shrouded rotor has been developed and some stiffness predictions have been obtained. The model couples the seal flow to the passage flow and uses a small perturbation approach to determine nonaxiymmetric flow conditions. The model uses basic conservation laws. Input parameters include aerodynamic parameters (e.g. flow coefficient, reaction, and work coefficient); geometric parameters (e.g. sealing gap, depth of seal gland, seal pitch, annulus height); and a prescribed rotor offset. Thus, aerodynamic stiffness predictions have been obtained. However, aerodynamic damping (i.e. unsteady aerodynamic) effects caused by a whirling turbine has not yet been examined. Therefore, this paper presents a new unsteady model to predict the unsteady flow field due to a whirling shrouded rotor in turbines. From unsteady perturbations in velocity and pressure at various whirling frequencies, not only stiffness but also damping effects of aerodynamic forces can be obtained. Furthermore, relative contributions of seal gland pressure asymmetry and turbine torque asymmetry are presented.

  • PDF