• Title/Summary/Keyword: Cross sectional configuration

Search Result 79, Processing Time 0.021 seconds

A numerical method for evaluating fire performance of prestressed concrete T bridge girders

  • Zhang, Gang;Kodur, Venkatesh;Song, Chaojie;Hou, Wei;He, Shuanhai
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.497-507
    • /
    • 2020
  • This paper presents a numerical method for evaluating fire performance of prestressed concrete (PC) T shaped bridge girders under combined effect of structural loading and hydrocarbon fire exposure conditions. A numerical model, developed using the computer program ANSYS, is employed to investigate fire response of PC T shaped bridge girders by taking into consideration structural inherent parameters, namely; arrangement of prestressing strands with in the girder section, thickness of concrete cover over prestressing strands, effective degree of prestress and content of prestressing strands. Then, a sequential thermo-mechanical analysis is performed to predict cross sectional temperature followed by mechanical response of T shaped bridge girders. The validity of the numerical model is established by comparing temperatures, deflections and failure time generated from fire tests. Through numerical studies, it is shown that thickness of concrete cover and arrangement of prestressing strands in girder section have significant influence on the fire resistance of PC T shaped bridge girders. Increase in effective degree of prestress in strands with triangular shaped layout and content in prestressing strands can slow down the progression of deflections in PC T shaped bridge girder towards the final stages of fire exposure, to thereby preventing sudden collapse of the girder. Rate of deflection based failure criterion governs failure in PC T shaped bridge girders under most hydrocarbon fire exposure conditions. Structural inherent parameters incorporated into sectional configuration can significantly enhance fire resistance of PC bridge girders; thus mitigating fire induced collapse of these bridge girders.

A Study on Composite Blade Analysis Library Development through Dimension Reduction/Recovery and Calculating Energy Release Rate (단면의 차원축소/복원해석과 에너지 해방률 계산을 위한 복합재 블레이드 해석 라이브러리 개발에 대한 연구)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • In this paper, numerical results of sectional analysis, stress recovery and energy release rate were compared with the results of VABS, 3-D FEM through the blade analysis library. The result of stress recovery analysis for one-dimensional model including the stiffness matrix is compared with stress results of three-dimensional FEM. We discuss the configuration of the blade analysis library and compare verifications of numerical analysis results of VABS. Blade analysis library through dimensional reduction and stress recovery is intended to be utilized in conjunction with pre- and post-processing of the analysis program of the composite blade, high-altitude uav's wing, wind blades and tilt rotor blade.

Derivation of Design Parameter for Heat Regenerator with Spherical Particles (구형축열체를 이용한 축열기의 설계인자도출)

  • Cho, Han-Chang;Cho, Kil-Won;Lee, Yong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1412-1419
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerator with spherical particles, was numerically analyzed to evaluate the heat transfer and pressure losses and to derive the design parameter for heat regenerator. It is confirmed that the computational results, such as air preheat temperature, exhausted gases outlet temperature, and pressure losses, agreed well with the experimental data. The thermal flow in heat regenerator varies with porosity, configuration of regenerator and diameter of regenerative particle. As the gas velocity increases with decreasing the cross-sectional area of the regenerator, the heat transfer between gas and particle enhances and pressure losses decrease. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled lower with the increase of pressure losses. Assuming a given exhaust gases temperature at the regenerator outlet, the regenerator need to be linearly lengthened with inlet Reynolds number of exhaust gases, which is defined as a regenerator design parameter.

Tribological Behavior of Multilayered WC-Ti1-xAlxN Coatings Deposited by Cathodic Arc Deposition Process on High Speed Steel

  • Kim, Jung Gu;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.52-61
    • /
    • 2006
  • Recently, much of the current development in surface modification engineering are focused on multilayered coatings. Multilayered coatings have the potential to improve the tribological properties. Four different multilayered coatings were deposited on AISI D2 steel. The prepared samples are designed as $WC-Ti_{0.6}Al_{0.4}N$, $WC-Ti_{0.53}Al_{0.47}N$, $WC-Ti_{0.5}Al_{0.5}N$ and $WC-Ti_{0.43}Al_{0.57}N$. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behavior. Especially, wear tests of four multilayered coatings were performed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec, 5.38 N load. The tests were carried out at room temperature in air by employing AISI 52100 steel ball ($H_R=66$) having a diameter of 10 mm. The surface morphology, and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Results have showed an improved wear resistance of the $WC-Ti_{1-x}Al_xN$ coatings with increasing of Al concentration. $WC-Ti_{0.43}Al_{0.57}N$ coating with the lower surface roughness and porosity with good adhesion enhanced wear resistance.

Characteristic Behavior of High-Strength Concrete Columns under Simulated Seismic Loading

  • Hwang, Sun-Kyoung
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.79-87
    • /
    • 2006
  • The main objective of this research is to examine the behavior of high-strength concrete(HSC) columns. Eight test columns in one-third scale were tested under the conditions of cyclic lateral force and a constant axial load equal to 30% of the column axial load capacity. The $200{\times}200mm$ square columns were reinforced with eight DB bars constituting a longitudinal steel ratio of 2.54% of the column cross-sectional area. The main experimental parameters were volumetric ratio of transverse reinforcement(${\rho}_s$=1.58, 2.25 percent), tie configuration(Type H, Type C, Type D) and tie yield strength($f_{yh}$=548.8 and 779.1 MPa). It was found that the hysteretic behaviour and ultimate deformability of HSC columns were influenced by the amount and details of transverse reinforcement in the potential plastic hinge regions. Columns of transverse reinforcement in the amount 42 percent higher than that required by seismic provisions of ACI 318-02 showed ductile behavior. At 30% of the axial load capacity, it is recommended that the yield strength of transverse reinforcement be held equal to or below 548.8 MPa. Correlations between the calculated damage index and the damage progress are proposed.

Herding Behavior in Emerging and Frontier Stock Markets During Pandemic Influenza Panics

  • LUU, Quang Thu;LUONG, Hien Thi Thu
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.147-158
    • /
    • 2020
  • We apply Return Dispersion Model by calculating CSAD (Cross-sectional standard deviation of return) and State Space Model to identify herding behavior in the period of pandemic (H1N1 and COVID-19). Employing data from TEJ and Data Stream, this paper examines whether the herding behavior is existing in Vietnam and Taiwan stock market, especially during pandemic influenza. We compare the differences in herding behavior between frontier and emerging markets by examining different industries across Vietnam and Taiwan stock market approaches. The results indicate solid evidence for investor herd configuration in the various industries of Vietnam and Taiwan. The herding impact in the industries will be greater than with the aggregate market. The different industries respond differently to influenza pandemic panics through uptrend and downtrend demonstrations. Up to 12 industries were found to have herding in Vietnam, while Taiwan had only 5 of 17 industries classified. Taiwan market, an emerging and herding-level market, has changed due to the impact of changing conditions such as epidemics, but not as strongly as in Vietnam. From there, we see that the disease is a factor that, not only creates anxiety from a health perspective, but also causes psychological instability for investors when investing in the market.

Design of EDM Machine Tool Structures for Microfactory with High Stiffness and Damping Characteristics (마이크로팩토리 용 미세방전 공작기계의 고강성/고감쇠 설계)

  • Kim, Ju-Ho;Chang, Seung-Hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.205-211
    • /
    • 2007
  • In this paper, foam-composite sandwich structures for EDM machine tool components such as column and column block designed by controlling stacking sequences and cross-sectional dimensions of the composite structures. The original column block is a box-shaped structure made of aluminum connecting a column and a Z-stage of the system. This research was focused on the design of efficient column block structure using a foam-composite sandwich structure which have good bending stiffness and damping characteristics to reduce the mass and increase damping ratio of the system. Vibration tests for getting damping ratio with respect to the stacking angle and thickness of the composites were carried out. Finite element analyses for static defection and vibration behaviour were also carried out to find out the appropriate stacking conditions; that is, stacking sequence and rib configuration. From the test and analysis results it was found that composite-foam sandwich structures for the microfactory system can be successful alternatives for high precision machining.

A Study on the Improvement of Resolution of Optical Coherence Tomography System Using Femto-Second Laser (펨토초 레이저를 이용한 OCT 시스템의 분해능 향상에 관한 연구)

  • Yang, Sung-Kuk;Park, Yang-Ha;Chang, Won-Suk;Oh, Sang-Ki;Kim, Hyun-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.31-36
    • /
    • 2004
  • Optical coherence tomography system has been extensively studied because it has some advantages such as imaging of high resolution, low cost, and compact size configuration. In order to obtain high resolution of OCT system we configured OCT system using a femto-second laser. We measure the pulse width using autocorrelator function because a femto-second laser is ultra short pulse. And we measured the practical resolution using theoretical equation and the measurement of reference sample. It is confirmed that the proposed OCT system has 1.5 times higher resolution and un distinctive cross-sectional image than OCT system with SLD as a light source.

Analysis of the image composition speed of RT and TPSM algorithms (RT과 TPSM 알고리즘의 영상구성 속도 분석)

  • Jin-Seob Shin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.139-143
    • /
    • 2023
  • In this paper, compared to the RT algorithm that constitutes CT images, the TPSM algorithm available in the conical CB-CT system was applied to enable 3D CT image configuration faster than the existing RT, and the image speeds of the two algorithms were compared and analyzed. To this end, the TPSM algorithm available in the conical CB-CT system was applied to enable real-time processing in 3D CT image composition. As a result of the experiment, it was found that the cross-sectional image constructed using TPSM decreases the quality of the image slightly by empty pixels as the distance from the center point increases, but in the case of TPSM rotation-based methods, the image composition speed is far superior to that of the RT algorithm.

A Study on the Architectural Planning of Spatial Composition and Circulation in Private Regional Infectious Disease Hospital (민간 권역 감염병 전문병원의 공간구성 및 동선에 관한 건축계획 연구)

  • Choi, Kwangseok;Jeong, Dawoon;Kwon, Soon Jung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.25 no.4
    • /
    • pp.81-91
    • /
    • 2019
  • Purpose: Since infectious disease hospitals are premised on emergency operations, the operational efficiency of secured personnel, equipment, facilities, etc. is relatively low. In order to increase such normal operational efficiency, it is necessary to flexibly operate facilities and operations during normal and emergency times. The purpose of this study is to suggest the architectural planning method focusing on the space composition and circulation of the regional infectious disease hospital which can increase the operational efficiency in the private hospitals. Methods: Through literature review, functional requirements of infectious disease hospitals were identified, and related personnels inter-views and field surveys were conducted to understand the spatial composition and circulation requirements of infectious disease hospitals. Results: Through the complete separation between the negative pressure zone and the general zone, even when the negative pressure zone is completely closed, the general zone should be operated separately to achieve operational efficiency. In addition, the separation of the negative pressure zone and the general zone should simultaneously consider the optimal space configuration and movement for each function while the zone settings match in the floor plan of each department and the overall cross-sectional configuration of the hospital. Implications: Infectious disease hospitals intended to be installed in private hospitals should not apply excessive space just for safety reasons and should plan to ensure their operational efficiency.