• Title/Summary/Keyword: Cross linking

Search Result 665, Processing Time 0.022 seconds

Physical Properties and Virtual Cloth Images of Cotton Fabrics Treated with Chitosan, 1,2,3,4-Butanetetracarboxylic Acid and Citric Acid (키토산과 1,2,3,4-Butanetetracarboxylic Acid, Citric Acid로 가공된 면직물의 역학적 특성과 가상 봉제 이미지)

  • Kim, Kyung-Sun;Jeon, Dong-Won;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.13 no.1
    • /
    • pp.102-114
    • /
    • 2009
  • Chitosan is a polysaccharide with cationic amino groups in its structure and has useful properties as functional materials. Various end-use developments of chitosan are in progress. When the cotton fabric is pretreated with chitosan, the hand property of cotton fabric may be improved expecially for the summer apparel. In this study, as a cross-linking agent to introduce chitosan into cotton, BTCA(butane-1,2,3,4-tetracarboxylic acid) or CA(citric acid) was added in order to prevent detachment of chitosan by the cross-linking. During the cross-linking procedure, via the padding-drying-heat setting, amino groups of chitosan and hydroxyl groups of cotton, carboxyl groups of BTCA/CA are cross-linked by forming anhydrous cyclic rings. Since BTCA has four carboxyl groups, cross-linking by thermal treatment is easy, leading to the trials in wrinkle-recovery treatment of cotton fabrics. However, the high price of the BTCA reagent has been a shortcoming in the actual application for industrial use. Therefore, in this study, we tried the application of CA having three carboxyl groups, which is relatively low priced, as the substituting cross-linking agent. The hand of the treated fabrics were evaluated by measuring physical properties. In addition, based on the physical properties, three-dimensional images were introduced by using 3D CAD systems and results were compared.

Physicochemical Properties of Cross-linked Apios Starch (가교결합 아피오스 전분의 이화학적 특성)

  • Park, Mi Hye;Kim, Meera
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.24 no.3
    • /
    • pp.400-406
    • /
    • 2014
  • Apios (Apios americana Medikus) belongs to Leguminosae and is called 'American groundnut', 'Potato bean', and 'wild bean'. Apios is native to the Northern United States but is not widely distributed in Korea. In this study, cross-linked apios starch was prepared by reaction with epichlorohydrin, followed by characterization. FT-IR spectroscopy confirmed the degree of cross-linking of apios starch. X-ray diffraction patterns of native apios showed typical 'A' type as peaks at 15.1, 17.1, 17.9 and $23.2^{\circ}$, and cross-linking did not affect relative crystallinity and X-ray diffraction patterns of the starch. Scanning electron micrographs showed that apios starch granules were smooth with a globular shape, and there was little damage to starch granules after cross-linking. The lightness value of cross-linked apios starch was lower than that of native apios starch, whereas the redness value was not significantly different between cross-linked apios starch and native apios starch. Blue value showed that cross-linking of starch did not affect the iodine reaction of starch.

Effect of Cross-Linking Agents on L-Sorbose Production by Immobilized Gluconobacter suboxydans Cells

  • PARK, YOUNG-MIN;SANG-KI RHEE;EUI-SUNG CHOI;IN SIK CHUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.696-699
    • /
    • 1998
  • Biological oxidation of D-sorbitol to L-sorbose using permeated and immobilized cells of Gluconobacter suboxydans was carried out to investigate the optimum reaction condition. The stabilization effect of cross-linking agents such as glutaraldehyde, tannic acid, and polyethylene imine to prevent the leakage of enzymes from beads containing permeated and immobilized cells of G. suboxydans was examined by the production of L-sorbose from the mixture of D-sorbitol and gluconic acid. The protein concentration effused from immobilized beads treated with only glutaraldehyde was $5.2\mug/m\ell$ after 20 h. The beads of G. suboxydans immobilized with alginate and cross-linked with 0.3% glutaraldehyde was the most useful for the oxidation of D-sorbitol to L-sorbose.

  • PDF

A cross-linking poly(urethane acrylate) binder for Si negative electrode in Li-ion batteries (LIBs)

  • Jang, Suk-Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.718-723
    • /
    • 2015
  • For the fabrication of the Si negative electrode in Li-ion batteries (LIBs) containing the cross-linking polymer binder, in this work, the urethane acrylate (UA) oligomer was synthesized via a simple synthetic process. The cross-linked poly(urethane acrylate) (CPUA)/carbone black (CB)/Si composite (CPUA/CB/Si composite) was fabricated through reactions between their reactive vinyl segments in the UA oligomer. Interestingly, the CPUA/CB/Si composite showed better cycle performance than the poly(vinylidene fluoride) (PVdF)/CB/Si composite (PVdF/CB/Si composite) and the polyurethane (PU)/CB/Si composite (PU/CB/Si composite). The CPUA/CB/Si composite had the best lithiation of about $2586mAh\;g^{-1}$. The UA oligomer showed a good compatibility with the electrode materials and current collector after and before a curing process.

Modification of Soy Protein Film by Formaldehyde (Formaldehyde 처리에 의한 대두단백 필름의 물성 개선)

  • Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.372-378
    • /
    • 1998
  • Two types of formaldehyde-treated soy protein isolate (SPI) films, formaldehyde-incorporated and formaldehyde-adsorbed films, and control SPI films were prepared. Cross-linking effect of formaldehyde on selected film properties such as color, tensile strength (TS), elongation at break (E), water vapor permeability (WVP), and water solubility (WS) were determined. Physical properties of formaldehyde-incorporated films were not geneally different from those of control films, while almost all of those among formaldehyde-adsorbed films were significantly different. Through cross-linking development within formaldehyde-adsorbed films, WS decreased significantly (P<0.05) from 26.1% to 16.6%, and TS increased two times while E decreased two times compared with control films. This was caused by insolubilization and hardening of protein by cross-linking most likely attributed to the significant changes in properties of protein films reacted with formaldehyde.

  • PDF

Studies on the Vulcanization Characteristics of Rubber-Bound Antioxidants (반응성노화방지제(反應性老化防止劑)의 가황특성(加黃特性)에 관(關)한 연구(硏究))

  • Paik, Nam-Chul
    • Elastomers and Composites
    • /
    • v.14 no.2
    • /
    • pp.83-102
    • /
    • 1979
  • The purpose of this dissertation is to study some of the vulcanization characteristics of rubber-bound antioxidants such as G-1, [N-(3-methacryloyloxy-2-hydroxypropyl)-N'-phenyl-p-phenylene diamine] and acryl, acrylamide & acrylester substituted hindered phenols. The influence of these antioxidants upon vulcanization characteristics in NR and SBR compounds in the presence of vulcanizing accelerators such as MSA, TT, DM, M & D was evaluated by means of Oscillationg Disk Cure Meter. The comparison was also made between the influence of rubber-bound antioxidants and that of conventional non-reactive antioxidants such as N-alkyl substituted PADA series. Regarding the influence of reactive type antioxidant G-1 mixed with accelerator TT upon vulcanization characteristics, rapid onset of vulcanization and higher degree of cross-linking were discovered, whereas in the case of accelerator M and DM, the result was slow onset of vulcanization and lesser degree of cross-linking. The comparison of vulcanizing characteristics among acrylic substituted hindered phenols as antioxidants was made under several vulcanization accelerator systems. Under such systems, MSA-S combined accelerator caused the onset of vulcanization to slow down and lowered the degree of cross-linking. Finally in the case of hindered phenol derivatives containing longer substituent, the delayed onset of vulcanization and the lowered degree of cross-linking could be discerned.

  • PDF

Analysis of Starch Properties and Application of Cross-linking Agent for Improving Adhesive Strength of Corrugated Board (골판지 접착 강도 향상을 위한 전분 특성 분석과 가교제의 적용)

  • Jung, Chul-Hun;Park, Jong-Moon;Lee, Jin-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.2
    • /
    • pp.67-73
    • /
    • 2012
  • Structural stability and shock absorption are important properties for corrugated board. In order to maintain structural stability, adhesive properties between top/bottom liners and corrugated medium are not only essential but also important for productivity and product quality. Borax has been an essential ingredient in corrugating adhesive solution. Borax increases viscosity, bonding between starchs and green adhesive bond. The objective of this research is to improving adhesive strength and viscosity stability by adding cross-linking agent instead of borax. Rheology and penetration of main starch gelatinization slurry were affected by borax addition level. Borax increased viscosity and decreased viscosity stability, while cross-linking additives increased viscosity stability and adhesive strength by anchoring effect.

Catalyst Effects on Cross-linking of a Multi-Functional Fluoropolymer/Blocked-HMDI Blends (다기능성 함불소고분자/Blocked-HMDI 블렌드계의 가교화 반응에서의 촉매 영향)

  • Ahn, Won-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2408-2413
    • /
    • 2012
  • Effects of stanous catalyst on the cross-linking reaction characteristics of multi-functional fluoropolymer with blocked-hexamethylene diisocyanate(HMDI) were studied by dynamic DSC and non-isothermal thermogravimetric analysis (TGA). Results showed that cross-linking reaction occurred around $230-250^{\circ}C$ aftr the solvent and phenol, blocking agent, were removed upto the $150^{\circ}C$. It was considered that the reaction mechanism of the multi-functional fluoropolymer with HMDI might not be changed by the catalyst, however, the reaction rate became extremely faster upto to 100 times, showing the change of activation energy 81.8 kJ/mol for non-catalytic system to 61.7 kJ/mol for 1 phr catalytic system.

Preparation of Cefaclor-Containing Gelatin Microcapsules and Their Drug Release Characteristics (수용성 약물인 세파클러를 함유하는 젤라틴 마이크로캅셀의 제조 및 약물 방출특성)

  • Cho, Seong-Wan;Park, Jong-Hwa;Park, Jun-Sang;Jang, Joung-Soo;Choi, Young-Wook
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.30-37
    • /
    • 1997
  • In order to formulate a controlled release system for oral drug delivery, the microcapsules were prepared in w/o emulsion containing cefaclor as a water-soluble model drug by th e method of interfacial polycondensation. Gelatin wis selected as a suitable polymer for interfacial polycondensation. Gelatin solution containing drug was emulsified in an organic phase under mechanical stirring. After emulsification, terephthaloyl chloride was added as cross linking agent, followed by mechanical stirring, washing and drying. Physical characteristics of microcapsules were investigated by optical microscopy, scanning electron microscopy and particle size analysis. Mean particle sizes of gelatin microcapsules were, in the range, of about 20~50 ${\mu}$m. The microcapsules were in good apperance with spherical shapes before washing, but were destroyed partially after washing and drying, even though some microcapsules were still maintained in their shapes. Contents of cefaclor in the microcapsules were calculated by UV spectrophotometry after 3 days extraction with pH 4 carbonate buffer solution. The effects of cross linking time. pH. concentration of cross-linking agent, and temperature on drug release kinetics have been discussed extensively.

  • PDF

Preparation of novel NF membrane via interfacial cross-linking polymerization

  • Lehi, Arash Yunessnia;Akbari, Ahmad;Soleimani, Hosna
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.173-187
    • /
    • 2015
  • The goal of present work is the preparation of a novel positively charged nanofiltration (NF) membrane and its development for the cation removal of aqueous solutions. This NF membrane was fabricated by the surface modification of polysulfone (PSf) ultrafiltration support. The active top-layer was formed by interfacial cross-linking polymerization of poly(ethyleneimine) (PEI) with p-xylylene dichloride (XDC) and then quaternized with methyl iodide to form a perpetually positively charged layer. In order to improve the efficiency of nanofiltration membrane, the concentration of PEI, XDC and methyl iodide solutions, PEI coating and cross-linking time have been optimized. As a result, a high water flux and high $CaCl_2$ rejection (1,000 ppm) was obtained for the composite membrane with values of $18.29L/m^2.h$ and 93.62% at 4 bar and $25^{\circ}C$, respectively. The rejections of NF membrane for different salt solutions followed the order of $Na_2SO_4$ < $MgSO_4$ < NaCl < $CaCl_2$. Molecular weight of cut off (MWCO) was calculated via retaining of PEG solutions with different molecular weights that finally, it revealed the Stokes and hydrodynamic radius of 1.457 and 2.507 nm on the membrane selective layer, respectively. The most efficient positively charged nanofiltration membrane exhibited a $Ni^{2+}$ rejection of 96.26% for industrial wastewater from Shamse Hadaf Co. (Kashan, Iran).