• Title/Summary/Keyword: Cross coefficients

Search Result 800, Processing Time 0.025 seconds

DEVELOPMENT OF CALCULATION METHOD OF SENSITIVITIES FOR LIGHT WATER REACTORS

  • Takeda, Toshikazu;Foad, Basma
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.753-758
    • /
    • 2013
  • A new method of calculating sensitivity coefficients of core characteristics relative to infinite-dilution cross sections has been developed. Conventional sensitivity coefficients are evaluated for the changes of effective cross sections which are dependent on individual models of core and cell. Therefore a correction has been derived to the conventional sensitivity coefficients based on the perturbation theory. The accuracy of the present method has been verified by comparing numerical results of sensitivity coefficients with a reference Monte-Carlo method.

A Study on Emotion Classification using 4-Channel EEG Signals (4채널 뇌파 신호를 이용한 감정 분류에 관한 연구)

  • Kim, Dong-Jun;Lee, Hyun-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.23-28
    • /
    • 2009
  • This study describes an emotion classification method using two different feature parameters of four-channel EEG signals. One of the parameters is linear prediction coefficients based on AR modelling. Another one is cross-correlation coefficients on frequencies of ${\theta}$, ${\alpha}$, ${\beta}$ bands of FFT spectra. Using the linear predictor coefficients and the cross-correlation coefficients of frequencies, the emotion classification test for four emotions, such as anger, sad, joy, and relaxation is performed with an artificial neural network. The results of the two parameters showed that the linear prediction coefficients have produced the better results for emotion classification than the cross-correlation coefficients of FFT spectra.

  • PDF

A Study on the Emotion State Classification using Multi-channel EEG (다중채널 뇌파를 이용한 감정상태 분류에 관한 연구)

  • Kang, Dong-Kee;Kim, Heung-Hwan;Kim, Dong-Jun;Lee, Byung-Chae;Ko, Han-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2815-2817
    • /
    • 2001
  • This study describes the emotion classification using two different feature extraction methods for four-channel EEG signals. One of the methods is linear prediction analysis based on AR model. Another method is cross-correlation coefficients on frequencies of ${\theta}$, ${\alpha}$, ${\beta}$ bands. Using the linear predictor coefficients and the cross-correlation coefficients of frequencies, the emotion classification test for four emotions, such as anger, sad, joy, and relaxation is performed with a neural network. Comparing the results of two methods, it seems that the linear predictor coefficients produce the better results than the cross-correlation coefficients of frequencies for-emotion classification.

  • PDF

OSMI ocean color products with updated cross-calibration coefficients

  • Lee S. G.;Kim Y. S.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.494-497
    • /
    • 2004
  • To date the KOMPSAT OSMI(Ocean Scanning Multi-spectral Imager) data have been widely used in natural disaster monitoring such as Typhoon, Asian Dust, Red Tide, and Forest Fire. Quantitative analyses related to the marine ecosystem have been delayed because they require good quality of data through Cal/Val activities. To resolve such problem, KARI performed the OSMI crosscalibration study with SeaWiFS team. In this study, we will demonstrate the OSMI ocean color products with updated cross-calibration coefficients and compare them to the previous cross-calibration results.

  • PDF

The analysis of electron transport coefficients in $CF_4$ molecular gas by multi-term approximation of the Boltzmann equation (다항근사 볼츠만 방정식에 의한 $CF_4$ 분자가스의 전자수송계수 해석)

  • Jeon, Byung-Hoon;Park, Jae-June;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.141-144
    • /
    • 2001
  • An accurate cross sections set are necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method. we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. In previous paper, we calculated the electron transport coefficients in pure $CF_4$ molecular gas by using two-term approximation of the Boltzmann equation. And by using this simulation method. we confirmed erroneous calculated results of transport coefficients for $CF_{4}$ molecule treated in this paper having 'C2v symmetry' as $C_{3}H_{8}$ and $C_{3}F_{8}$ which have large vibrational excitation cross sections which may exceed elastic momentum transfer cross section. Therefore, in this paper, we calculated the electron transport coefficients(W and $ND_L$) in pure $CF_4$ gas by using multi-term approximation of the Boltzmann equation by Robson and Ness which was developed at lames-Cook university, and discussed an application and/or validity of the calculation method by comparing the calculated results by two-term and multi-term approximation code.

  • PDF

The analysis of electron transport coefficients in CF$_4$ molecular gas by multi-term approximation of the Boltzmann equation (다항근사 볼츠만 방정식에 의한 CF$_4$분자가스의 전자수송계수 해석)

  • 전병훈;박재준;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.141-144
    • /
    • 2001
  • An accurate cross sections set are necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method, we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. In previous paper, we calculated the electron transport coefficients in pure CF$_4$ molecular gas by using two-term approximation of the Boltzmann equation. And by using this simulation method, we confirmed erroneous calculated results of transport coefficients for CF$_4$ molecule treated in this paper having 'C2v symmetry'as C$_3$H$_{8}$ and C$_3$F$_{8}$ which have large vibrational excitation cross sections which may exceed elastic momentum transfer cross section. Therefore, in this paper, we calculated the electron transport coefficients(W and ND$_{L}$) in pure CF$_4$ gas by using multi-term approximation of the Boltzmann equation by Robson and Ness which was developed at James-Cook university, and discussed an application and/or validity of the calculation method by comparing the calculated results by two-term and multi-term approximation code.e.

  • PDF

Identification of Cross-WLF Viscosity Model Parameters Using Optimization Technique (최적화기법을 이용한 Cross-WLF점도 모델 계수 추정)

  • Kim, Sun-Yong;Park, Si-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.623-632
    • /
    • 2018
  • Predicting the behavior of rheological polymers is highly shear rate- and temperature-dependent. The Cross-WLF viscosity model has become a powerful solution that describes the shear rate- and temperature-dependent characteristics. To estimate the behavior of polymers in computational simulations, the coefficients of the Cross-WLF model should be well identified. An identification technique was proposed to determine the Cross-WLF viscosity model coefficient. The assumption is that the Cross-WLF viscosity model well describes the real characteristics of polymers when the calculated viscosity with the parameters is identical to the reference data. In this study, Auto-desk Moldflow data were used as a reference. The numerical examples showed that the proposed method accurately identifies the Cross-WLF viscosity model coefficients.

A study on the electron transport coefficients using monte carlo method in argon gas (몬테칼로법을 이용한 Ar기체의 전자수송계수에 관한 연구)

  • 하성철;전병훈
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.685-692
    • /
    • 1995
  • The electron transport coefficients in argon gas is studied over the range of E/N values from 85 to 566 Td by the Monte Carlo method considering the latest cross section data. The result of the Monte Carlo method analysis shows that the value of the electron transport coefficients such as the electron drift velocity, the ratio of the longitudinal and transverse diffusion coefficients to the mobility. It is also found that the electron transport coefficients calculated by the two-term approximation analysis agree well with those by Monte Carlo calculation. The electron energy distributions function were analysed in argon at E/N=283, and 566 Td for a case of the equilibrium region in the mean electron energy. A momentum transfer cross section for the argon atom which was consistent with both of the present electron transport coefficients was derived over the range of mean electron energy from 10.3 to 14.5 eV, also suggested as a set of electron cross section for argon atom. The validity of the results obtained has been confirmed by a Monte Carlo simulation method.

  • PDF

Static aerodynamic force coefficients for an arch bridge girder with two cross sections

  • Guo, Jian;Zhu, Minjun
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.209-216
    • /
    • 2020
  • Aiming at the wind-resistant design of a sea-crossing arch bridge, the static aerodynamic coefficients of its girder (composed of stretches of π-shaped cross-section and box cross-section) were studied by using computational fluid dynamics (CFD) numerical simulation and wind tunnel test. Based on the comparison between numerical simulation, wind tunnel test and specification recommendation, a combined calculation method for the horizontal force coefficient of intermediate and small span bridges is proposed. The results show that the two-dimensional CFD numerical simulations of the individual cross sections are sufficient to meet the accuracy requirements of engineering practice.

A Study on the Operational Characteristic with the Scale Effect of the Cross-Flow Fan (치수효과를 고려한 횡류홴의 작동특성연구)

  • Kim, H.-S.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.583-589
    • /
    • 2004
  • One of noticeable features in the cross flow fan is that a working fluid passes through impeller blade twice without distinction between the inlet and exit angles. Also, it does produce higher circumferential velocity than other types of blade at the same flow rate in accordance with the application of the forward curved shape. However, a design theory for the cross-flow fan has not yet been formed owing to an eccentric vortex, which is the remarkable characteristics, occurred in a cross-flow fan. Furthermore, the eccentric vortex, which is difficult to control of the size and position, is the important cause of performance decrease. In this study, experiments are carried out to estimate the similarity of the cross-flow fan with various scales and rotational velocity changes. Pressure coefficients to flow coefficients with various scales of the cross-flow fan are plotted to research the application of the general similarity law of the turbomachinery in the cross-flow fan with Archimedes spital, which is the important factor haying an effect on it.

  • PDF