• Title/Summary/Keyword: Cross Flow Velocity

Search Result 548, Processing Time 0.022 seconds

A Study on Velocity-Log Conductivity, Velocity-Head Cross Covariances in Aquifers with Nonstationary Conductivity Fields (비정체형 지하대수층의 속도-대수투수계수, 속도-수두 교차공분산에 관한 연구)

  • Seong, Gwan-Je
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.363-373
    • /
    • 1998
  • In this study, random flow field in a nonstationary porous formation is characterized through cross covariances of the velocity with the log conductivity and the head. The hydraulic head and the velocity in saturated aquifers are found through stochastic analysis of a steady, two-dimensional flow field without recharge. Expression for these cross covariances are obtained in quasi-analytic forms all in terms of the parameters which characterize the nonstationary conductivity field and the average head gradient. The cross covariances with a Gaussian correlation function for the log conductivity are presented for two particular cases where the trend is either parallel or perpendicular to the mean head gradient and for separation distances along and across the mean flow direction. The results may be of particular importance in transport predictions and conditioning on field measurements when the log conductivity field is suspected to be nonstationary and also serve as a benchmark for testing nonstationary numerical codes. Keywords : cross covariance, nonstationary conductivity field, saturated aquifer, stochastic analysis.

  • PDF

Unsteady Nature of a Tip Leakage Vortex in an Axial Flow Fan (축류팬 익단누설와류의 비정상 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.845-850
    • /
    • 2003
  • Unsteady nature of a tip leakage vortex in an axial flow fan operating at a design and off-design operating conditions has been investigated by measuring the velocity fluctuation in a blade passage with a rotating hotwire probe sensor. Two hot-wire probe sensors rotating with the fan rotor were also introduced to obtain the cross-correlation coefficient between the two sensors located in the vortical flow as well as the fluctuating velocity. The results show that the vortical flow structure near the rotor tip can be clearly observed at the quasi-orthogonal planes to a tip leakage vortex. The leakage vortex is enlarged as the flow rate is decreased, thus resulting in the high blockage to main flow. The spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region at higher flow rates than the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition.

  • PDF

Flow and heat transfer analysis for the performance improvement of cross-flow fin-tube heat exchangers (에어컨 실외기용 휜-관 직교형 열교환기의 열, 유동 해석 및 휜 성능 개선을 위한 연구)

  • An C. S.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.183-189
    • /
    • 2004
  • The flow and the heat transfer about the cross-flow fin-tube heat exchanger in an out-door unit of a heat pump system has been numerically Investigated. Using the general purpose analysis code, FLUENT, the Navier-Stokes equations and the energy equation are solved for the three dimensional computation domain that encompasses multiple rows of the fin-tube. The temperature on the fin and tube surface is assumed constant but compensated later through the fin efficiency when predicting the heat-transfer rate. The contact resistance is also taken into consideration. The flow and temperature fields for a wide range of inlet velocity and fin-tube arrangements are examined and the results are presented in the paper. The details of the flow are very well captured and the heat transfer rate for a range of inlet velocity is in excellent agreement with the measured data. The flow solution provides the effective permeability and the inertial resistance factor of the heat exchanger if the exchanger were to be approximated by the porous medium. This information is essential in carrying out the global flow field calculation which, in turn, provides the inlet velocity lot the microscopic temperature-field calculation of the heat exchanger unit.

  • PDF

Turbulent Dispersion Behavior of a Jet Issued into Thermally Stratified Cross Flows(I) (열적으로 성층화된 횡단류에 분출된 제트의 난류확산 거동(I))

  • Kim, Kyung Chun;Kim, Sang Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.218-225
    • /
    • 1999
  • Flow visualization study has been conducted to simulate the turbulent dispersion behavior of a crossflow jet physically under the conditions of various thermal stratification in a wind tunnel. A smoke jet with the constant ratio of the jet to freestream velocity is injected normally to the cross flow of the thermally stratified wind tunnel(TSWT) for flow visualization. The typical natures of the smoke dispersion under different thermal stratifications such as neutral, weakly stable, strongly stable, weakly unstable, strongly unstable and inversion layer are successfully reproduced in the TSWT. The Instantaneous velocity and temperature fluctuations are measured by using a cold and hot-wire combination probe. The time averaged dispersion behaviors, the centerline trajectories, the spreading angles and the virtual origins of the cross jet are deduced from the edge detected images with respect to the stability parameter. All the general characteristics of the turbulent dispersion behavior reveal that the definitely different dispersion mechanisms are inherent in both stable and unstable conditions. It is conjectured that the turbulent statistics obtained in the various stability conditions quantitatively demonstrate the vertical scalar flux plays a key role in the turbulent dispersion behavior.

Experimental study of turbulent flow in a U-bend of circular cross-section (원형단면의 곡관에서의 난류유동 측정)

  • Lee, Geon-Hwi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.956-965
    • /
    • 1998
  • Hot-wire measurement of the longitudinal and radial velocity components and Reynolds stresses are reported for developing turbulent flow in a strongly curved 180 deg. pipe and its tangents. Slanted wire is rotated to 6 directions and the voltage outputs of them are combined to obtain the mean velocities and Reynolds stresses. Significant double maxima in the longitudinal velocity component appear in the bend. V-profiles reveal the development of a strong secondary flow. This secondary flow is induced by the transverse pressure gradient set up between the outer(r$\sub$o/) and inner(r$\sub$i/) wall region of the bend. Another second cross-stream flow develops after .theta.=135 deg. and its direction is opposed to that of main second flow.

Numerical study of fluid behavior on protruding shapes within the inlet part of pressurized membrane module using computational fluid dynamics

  • Choi, Changkyoo;Lee, Chulmin;Park, No-Suk;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.498-505
    • /
    • 2020
  • This study analyzes the velocity and pressure incurred by protruding shapes installed within the inlet part of a pressurized membrane module during operation to determine the fluid flow distribution. In this paper, to find the flow distribution within a module, it investigates the velocity and pressure values at cross-sectional and outlet planes, and 9 sections classified on outlet plane using computational fluid dynamics. From the Reynolds number (Re), the fluid flow was estimated to be turbulent when the Re exceeded 4,000. In the vertical cross-sectional plane, shape 4 and 6 (round-type protrusion) showed the relatively high velocity of 0.535 m/s and 0.558 m/s, respectively, indicating a uniform flow distribution. From the velocity and pressure at the outlet, shape 4 also displayed a relatively uniform fluid velocity and pressure, indicating that fluid from the inlet rapidly and uniformly reached the outlet, however, from detailed data of velocity, pressure and flowrate obtained from 9 sections at the outlet, shape 6 revealed the low standard deviations for each section. Therefore, shape 6 was deemed to induce the ideal flow, since it maintained a uniform pressure, velocity and flowrate distribution.

A Study on Flow Rate Estimation Using Pressure Fluctuation Signals in Pipe (배관내 압력변동 신호를 이용한 유량 추정 방법 연구)

  • Jeong Han Lee;Dae Sic Jang;Jin Ho Park
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.155-162
    • /
    • 2023
  • In nuclear power plants, the flow rate information is a major indicator of the performance of rotating equipment such as pumps, and is a very important one required for facility operation and maintenance. To measure a flow rate, various types of methods have been developed and used. Among them, the differential pressure type using orifice and the direct doppler type using ultrasonic waves are the most commonly used. However, these flow rate measurement methods have limitations in installation, conditions and status of the measuring part, etc. To solve this problem, we have studied a new technique for measuring flow rate from scratch. In this paper, we have devised a technique to estimate the flow rate using an average moving velocity of large-scale eddy in turbulence that occurs in the piping flow field. The velocity of the large-scale eddy can be measured using the pressure fluctuation signals on the inner surface of the pipe. To estimate the flow rate, at first a cross-correlation function is applied to the two pressure fluctuation signals located at different positions in the down stream for calculating the time delay between the moving eddies. In order to validate the proposed flow rate estimation method, CFD analyses for the internal turbulence flow in pipe are conducted with a fixed flow condition, where the pressure fluctuation signals on the pipe inner surface are simulated. And then the average flow velocity of the large scale eddy is to be estimated. The estimated flow velocity is turned out to be similar to the fixed (known) flow rate.

PIV Analysis of Cubic Channel Cavity Flow (입방형 채널 캐비티 유동의 PIV 해석)

  • 조대환;김진구;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.557-563
    • /
    • 1997
  • The unsteady flow in three-dimensional cubic cavity with narrow channel at upper region is investigated experimentally for three kinds of Reynolds number, 1*10/sup 4/, 3*10/sup 4/ and 5*10/sup 4/ based on the cavity width and cavity inlet mean flow velocity. Instant velocity vectors are obtained simultaneously at whole field by PIV(Particle Image Velocimetry). Wall pressure distributions are estimated using Poisson equation from the velocity data. Results of PIV reveal that severe unsteady flow fluctuation within the cavity are remarkable at all Reynolds numbers and sheared mixing layer phenomena are also found at the region where inlet driving flow is collided with the clock-wise rotating main primary vortex. Instant velocity profiles reveal that deformed forced vortex formation is observed throughout the entire region and spanwise kinetic energy migration is conspicuous.

  • PDF

A Study on Velocity Profiles and Critical Dean Number of Developing Transitional Unsteady Flows in a Curved Duct (곡관덕트의 입구영역에서 천이비정상유동의 속도분포와 임계딘수에 관한연구)

  • 이행남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.862-870
    • /
    • 1998
  • In this paper an experimental investigation of characteristics of developing transitional unsteady flows in a square-sectional 180。 curved duct are presented. The experimental study using air is carried out to measure axial velocity profiles secondary flow velocity profiles and entrance length by using Laser Do ppler Velocimeter(LDV) system. The flow development is found to depend upon Dean number dimensionless angular frequency velocity amplitude ration and cur-vature ratio. Of special interest is the secondary flow generated by centrifugal effects in the plane of the cross-section of the duct. The secondary flows are strong and complicate at entrance region. The entrance length of transitional pulsating flow is obtained to 120。 of bended angle of duct in this experimental conditions.

  • PDF

An Experimental Study on the Mixing Flow Structure of Turbulent Cross Flow with Respect to the Ratio of Mass Flow Rate (난류충돌유동의 질량유량비에 따른 혼합유동구조에 관한 실험적 연구)

  • 이대옥;노병준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2150-2158
    • /
    • 1992
  • This study was carried out to investigate the flow structure and mixing process of a cross mixing flow formed by two round jets with respect to the ratio of mass flow rate. This flow configuration is of great practical relevance in a variety of combustion systems, and the flow behaviour of a cross jet defends critically on the ratio of mass flow rate and the cross angle. The mass flow rate ratios of two different jets were controlled as 1.0, 0.8, 0.6, and 0.4, and the crossing angle of two round jets was fixed at 45 degree. The velocities issuing from jet nozzle with an exit diameter of 20mm were adjusted to 40m/s, 32m/s, 24m/s, and 16m/s, and the measurements have been conducted in the streamwise range of $1.1X_0$to $2.5X_0$ by an on-line measurement system consisted of a constant temperature type two channel hot-wire anemometry connected to a computer analyzing system. The original air flow was generated by a subsonic wind tunnel with reliable stabilities and uniform flows in the test section. For the analysis of the cross mixing flow structure in the downstream region after the cross point, the mean velocity profiles, the resultant velocity contours, and the three-dimensional profiles depending upon the mass flow rate ratio have been concentrately studied.