• Title/Summary/Keyword: Cropping Systems

Search Result 278, Processing Time 0.029 seconds

Effect of Carbon Dioxide Concentration, Temperature, and Relative Drought on Growth Responses and Yield in Spring Potato (Solanum tuberosum L.) (이산화탄소와 온도 그리고 한발 영향에 따른 감자의 생육과 수량반응)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.149-158
    • /
    • 2018
  • Agriculture is strongly influenced by climate change such as increased temperature and carbon dioxide ($CO_2$). This study describes the effects of climate change elevated $CO_2$, temperature, and relative drought on growth responses and yield in potato (Solanum tuberosum L.). The assessment was conducted for spring seasons in Soil-Plant-Atmosphere Research (SPAR) chamber at National Institute of Crop Science (NICS). Potatoes exhibit a positive response to $CO_2$ enrichment but water stress primarily reduces potato canopy and tuber yield. Elevated $CO_2$ and temperature increased both dry weight and tuber yield. Elevated $CO_2$ and temperature influenced SPAR 2 plants to a larger, and tuber increased yield up to 28% of than in SPAR 1(30-year average temperature at 450 ppm of $CO_2$). Our study findings indicate that tuber yield increase in potato under high $CO_2$ concentration was due to an increase in the size of individual tubers rather than in the number of the tubers per plant. On other hand, SPAR 3(30-year average temperature $+2.8^{\circ}C$ at 700 ppm of $CO_2$ under water stress) was lower than SPAR 2(30-year average temperature $+2.8^{\circ}C$ at 700 ppm of $CO_2$) nearly 56% of tuber yield due to drought. The results confirm potato drought sensitivity in terms of yield response. The experiment also showed that, in the conditions of climate change, climate change scenarios that improve cropping systems with potato.

Growth, Photosynthesis and Chlorophyll Fluorescence of Chinese Cabbage in Response to High Temperature (고온 스트레스에 대한 배추의 생장과 광합성 및 엽록소형광 반응)

  • Oh, Soonja;Moon, Kyung Hwan;Son, In-Chang;Song, Eun Young;Moon, Young Eel;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.318-329
    • /
    • 2014
  • In order to gain insight into the physiological responses of plants to high temperature stress, the effects of temperature on Chinese cabbage (Brassica campestris subsp. napus var. pekinensis cv. Detong) were investigated through analyses of photosynthesis and chlorophyll fluorescence under 3 different temperatures in the temperature gradient tunnel. Growth (leaf length and number of leaves) during the rosette stage was greater at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures than at ambient temperature. Photosynthetic $CO_2$ fixation rates of Chinese cabbage grown under the different temperatures did not differ significantly. However, dark respiration rate was significantly higher in the cabbage that developed under ambient temperature relative to elevated temperature. Furthermore, elevated growth temperature increased transpiration rate and stomatal conductance resulting in an overall decrease of water use efficiency. The chlorophyll a fluorescence transient was also considerably affected by high temperature stress; the fluorescence yield $F_J$, $F_I$, and $F_P$ decreased considerably at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, with induction of $F_K$ and decrease of $F_V/F_O$. The values of RC/CS, ABS/CS, TRo/CS, and ETo/CS decreased considerably, while DIo/CS increased with increased growth temperature. The symptoms of soft-rot disease were observed in the inner part of the cabbage heads after 7, 9, and/or 10 weeks of cultivation at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, but not in the cabbage heads growing at ambient temperature. These results show that Chinese cabbage could be negatively affected by high temperature under a future climate change scenario. Therefore, to maintain the high productivity and quality of Chinese cabbage, it may be necessary to develop new high temperature tolerant cultivars or to markedly improve cropping systems. In addition, it would be possible to use the non-invasive fluorescence parameters $F_O$, $F_V/F_M$, and $F_V/F_O$, as well as $F_K$, $M_O$, $S_M$, RC/CS, ETo/CS, $PI_{abs}$, and $SFI_{abs}$ (which were selected in this study), to quantitatively determine the physiological status of plants in response to high temperature stresses.

Evaluation of Agronomic Characteristics and Fatty Acid Composition of Flax Germplasms (아마 유전자원의 농업적 특성 및 지방산 조성 평가)

  • Lee, Yong-Hwa;Bae, Sang-Mok;Park, Won;Kim, Kwang-Soo;Jang, Young-Seok;Lee, Kyeong-Bo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.2
    • /
    • pp.124-130
    • /
    • 2016
  • In this study, agronomic characteristics and fatty acid composition of 121 flax (Linum usitatissimum L.) germplasms were analyzed. The flax germplasms had a fairly short growth period of 75-95 days. The plant height at maturity varied from 52 to 124 cm. The flower color varied from white to lilac and even purple. Early flowering flax germplasms had white flowers and were resistant to lodging. In early flowering flax germplasms, all agronomic characteristics, including growth period, plant height, branch number per plant, stem diameter, number of capsules per raceme, seed number per capsule, 1000-seed weight, and seed yield, were decreased. The average fatty acid composition of 121 flax germplasms comprised palmitic acid (5.3%), stearic acid (4.3%), oleic acid (29.7%), linoleic acid (13.1%) and linolenic acid (46.4%). The total content of unsaturated fatty acids ranged from 84~94% with an average of 88%. Among the fatty acids, linolenic acid (omega-3) content was the highest with a range of 36~54%. In five selected flax germplasms (Hollandia 1803, Red son, C & F Res Br 1767, Wiera, and Ireland 1657) with high linolenic acid (${\geq}51%$), total lipid and protein contents were 30~36% and 5.4~6.9%, respectively. Overall, flax can practically be adoptable into cropping systems in South Korea and utilized as a scenery crop, since flax has a short cultivation period with diverse flower colors.

Effect of Application of Cattle Slurry on Dry Matter Yield and Nutritive Value of Whole Crop Barley and Italian ryegrass and Environmental Pollution in Paddy Land (논에서 우분액비 시용이 총체보리 및 이탈리안 라이그라스의 생산성과 사료가치 및 환경오염에 미치는 영향)

  • Choi, Ki-Choon;Na, Sang-Pil;Jung, Min-Woong;Lim, Young-Chul;Park, Hyung-Su;Kim, Jong-Geun;Kim, Won-Ho;Kim, Maeng-Jung;Choi, Gi-Jun;Kim, Myeong-Hwa;Lee, Sang-Rak;Kim, Da-Hye;Yook, Wan-Bang
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.123-130
    • /
    • 2012
  • This study was conducted to investigate the effects of cattle slurry on productivity of whole crop barley and Italian ryegrass and environmental pollution in paddy land. Cropping systems used in this study were consisted of two designs, such as whole crop barley applied with cattle slurry (WCB) and Italian ryegrass applied with cattle slurry (IRG). The field experiments were conducted on the clay loam at Backsanmyun, Kimje, Chunlabukdo province in Korea for three years (May 2006 to Apr. 2009). This study was arranged in completely randomized design with three replicates. The yields of WCB and IRG were 7,520 kg/ha and 10,320 kg/ha, respectively. The yields of IRG significantly increased as compared with that of WCB (p<0.05). The yield of Italian ryegrass in 1st cutting time was about 2-fold higher than that of 2nd cutting time. The contents of crude protein of IRG were higher than that of WCB. However, the contents of NDF, ADF and TDN were no difference between WCB and IRG treatments. The pH, and contents of T-N, $P_2O_5$ and organic matter (OM) in soil samples collected at the end of the experiment increased as compared with those at the beginning of the experiment (p<0.05). After the end of experiment, the concentrations of CEC (Ca, Na, Mg and K) in soil samples collected at the end of the experiment were remarkably higher than those at the beginning of the experiment (p<0.05). The concentrations of $NH_4$-N, $NO_3$-N, $PO_4$-P, Cl, Ca, K, Mg and Na in leaching water in paddy land cultivated with WCB and IRG were no difference between WCB and IRG treatments.

Studies on Growth, Forage Yield, and Nutritive Value according to Different Seeding Dates of Barnyard Millet (파종기에 따른 사료용 피의 생육, 수량 및 사료가치에 관한 연구)

  • Lee, Jung-Joon;Kim, Jung-Gon;Sung, Byung-Ryul;Song, Tae-Hwa;Park, Tae-Sun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.4
    • /
    • pp.245-251
    • /
    • 2013
  • These experiments are being conducted to obtain data of plant height, panicle length, heading date, number of culm, and fresh and dry weight, crude protein, acid detergent fiber (ADF), neutral detergent fiber (NDF), total digestible nutrients (TDN) by six times seeding of 10 days interval ranging from May 1st to June 21st for two types of barnyard millet from the Suwon area in Korea. In the early-heading type, IT 170609 (Echinochloa crus-galli), the plant height and the number of culm per square meters are decreased by late seeding relatively, and heading date is 7 to 10 days earlier than the late seeding. And the dry weight of forage is rapidly decreased after the June 11th seeding. In the late-heading type, IT 195422 (Echinochloa frumentacea), the plant height and the number of culm per square meters are also decreased by late seeding relatively, and heading date is about 13 days earlier than late seeding. The dry weight of forage was rapidly decreased after the June 11th seeding. In both two types, the nutritive value of ADF, NDF, and TDN are not changed by late seeding, but crude protein is increased by late seeding. The TDN yields of late-heading type, IT 195400, show average amounts in the June 1st seeding, but the TDN yield of early-heading type, IT 170606, indicate safety amounts of dry weight to the March 21st seeding. And these data are available for cropping systems, cultivating barnyard millet in summer and cereals for forage in winter, to get high production of forage in Korea.

Fertility Status in Northeastern Alpine Soils of South Korea with Cultivation of Vegetable Crops (강원도 고랭지 채소 재배지의 토양 비옥도관리 현황과 전망)

  • Yang, Jae-E.;Cho, Byong-Ok;Shin, Young-Oh;Kim, Jeong-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Total upland area for cultivating the vegetable crops in the Alpine soils of Northeastern South Korea has been extending its limit to meet the increasing demand of vegetable food in recent decades. About 70% of these alpine soils are located in over 7% of the slope and most of vegetable crops have been cultivated intensively without practicing the best management systems. Thus, soil erosion and continuous cropping system have degenerated the soil fertility and shown detrimental effects on water quality. We initiated an intensive and extensive investigation to characterize the fertility problems encountered in these uplands. Objectives of this paper were to characterize the fertility status in the Alpine soils cultivated with vegetable crops for many years and to provide the recommendations for adequate soil management measures including fertilization and erosion control. Soils in general have good drainage with textural classes of loam or sandy loam. Their topographical characteristics tended to lead them to shallow plow layers, and the steepness of the terrain created erosion hazard. Of the soils examined, about 11% of uplands over 30% gradient was found in need of an urgent reforestation. A high content of gravel and firm hardness of soil attributed to inhibit the utilization of farm machinery and plant-root development. The average soil pH 5.6 was slightly low relative to pH 5.70 of the national average. Organic matter content was high compared with 2.0% of national average, but decreased with the prolonged cultivation periods. Available $P_2O_5$ concentration was unusually high due to the consequence of over dose application with chemical and organic fertilizers. Exchangeable cations as Ca, Mg, and K were appeared to be decreased in these regions with prolonging the cultivation periods. There were no significant differences in cation exchange capacity (CEC) and electrical conductivity (EC) among locations. Heavy metal contents were mostly lower than the threshold of danger level designated by Soil Environment Conservation Law of South Korea. Results indicated that a proper countermeasure and the best management practice should be immediately implemented to conserve the top soil and fertility in the Alpine regions.

  • PDF

A Study on Transition of Rice Culture Practices During Chosun Dynasty Through Old References IX. Intergrated Discussion on Rice (주요(主要) 고농서(古農書)를 통(通)한 조선시대(朝鮮時代)의 도작기술(稻作技術) 전개(展開) 과정(過程) 연구(硏究) - IX. 도작기술(稻作技術)에 대(對)한 종합고찰(綜合考察))

  • Guh, J.O.;Lee, S.K.;Lee, E.W.;Lee, H.S.
    • Korean Journal of Weed Science
    • /
    • v.12 no.1
    • /
    • pp.70-79
    • /
    • 1992
  • From the beginning of the chosun dynasty, an agriculture-first policy was imposed by being written farming books, for instance, Nongsajiksul, matched with real conditions of local agriculture, which provided the grounds of new, intensive farming technologies. This farming book was the collection of good fanning technologies that were experienced in rural farm areas at that time. According to Nongsajiksul, rice culture systems were divided into "Musarmi"(Water-Seeded rice), /"Kunsarmi"(dry-seeded rice), /transplanted rice and mountainous rice (upland rice) culture. The characteristics of these rice cultures with high technologies were based of scientific weeding methods, improved fertilization, and cultivation works using cattle power and manpower tools systematically. Reclamation of coastal swampy and barren land was possible in virtue of fire cultivation farming(火耕) and a weeding tool called "Yoonmok"(輪木). Also, there was an improved hoe to do weeding works as well as thinning and heaping-up of soil at seeding stages of rice. Direct-seeded rice culture in flat paddy fields were expanded by constructing the irrigation reservoirs and ponds, and the valley paddy fields was reclaimed by constructing "Boh(洑)". These were possible due to weed control by irrigation waters, keeping soil fertility by inorganic fertilization during irrigation, and increased productivity of rice fields by supplying good physiological conditions for rice. Also, labor-saving culture of rice was feasible by transplanting but in national-wide, rice should not basically be transplanted because of the restriction of water use. Thus, direct-seeded rice in dry soils was established, in which rice was direct-seeded and grown in dry soils by seedling stages and was grown in flooded fields when rained, as in the book "Nongsajiksul". During the middle of the dynasty(AD 1495-1725), the excellent labor-saving farmings include check-rowing transplanting because of weeding efficiency and availability in rice("Hanjongrok"), and, nurserybed techniques (early transplanting of rice) were emphasized on the basis of rice transplanting ["Nongajibsung"]. The techniques for deep plowing with cattle powers and for putting more fertilizers were to improve the productivity of labor and land, The matters advanced in "Sanlimkyungje" more than in "Nongajibsung" were, development of "drybed of rice nursery stock", like "upland rice nursery" today, transplanting, establishment of "winter barly on drained paddy field, and improvement of labor and land-productivity in rice". This resulted in the community of large-scale farming by changing the pattern of small-farming into the production system of rice management. Woo-hayoung(1741-1812) in his book "Chonilrok" tried to reform from large-scale farmings into intensive farmings, of which as eminent view was to divide the land use into transplanting (paddy) and groove-seeding methods(dry field). Especially as insisted by Seo-yugo ("Sanlimkyungjeji"), the advantages of transplanting were curtailment of weeding labors, good growth of rice because of soil fertility of both nurserybed and paddy field, and newly active growth because rice plants were pulled out and replanted. Of course, there were reestimation of transplanting, limitation of two croppings a year, restriction of "paddy-upland alternation", and a ban for large-scale farming. At that period, Lee-jiyum had written on rice farming technologies in dry upland with consider of the land, water physiology of rice, and convenience for weeding, and it was a creative cropping system to secure the farm income most safely. As a integrated considerations, the followings must be introduced to practice the improved farming methods ; namely, improvement of farming tools, putting more fertilizers, introduction of cultural technologies more rational and efficient, management of labor power, improvement of cropping system to enhance use of irrigation water and land, introduction of new crops and new varieties.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF