• Title/Summary/Keyword: Crop monitoring

Search Result 409, Processing Time 0.028 seconds

A global-scale assessment of agricultural droughts and their relation to global crop prices (전 지구 농업가뭄 발생특성 및 곡물가격과의 상관성 분석)

  • Kim, Daeha;Lee, Hyun-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.883-893
    • /
    • 2023
  • While South Korea's dependence on imported grains is very high, droughts impacts from exporting countries have been overlooked. Using the Evaporative Stress Index (ESI), this study globally analyzed frequency, extent, and long-term trends of agricultural droughts and their relation to natural oscillations and global crop prices. Results showed that global-scale correlations were found between ESI and soil moisture anomalies, and they were particularly strong in crop cultivation areas. The high correlations in crop cultivation areas imply a strong land-atmosphere coupling, which can lead to relatively large yield losses with a minor soil moisture deficits. ESI showed a clear decreasing trend in crop cultivation areas from 1991 to 2022, and this trend may continue due to global warming. The sharp increases in the grain prices in 2012 and 2022 were likely related to increased drought areas in major grain-exporting countries, and they seemed to elevate South Korea's producer price index. This study suggests the need for drought risk management for grain-exporting countries to reduce socioeconomic impacts in South Korea.

Analysis of Relationship between Tomato Growth, Vital Response, and Plant-induced Electrical Signal in a Plastic Greenhouse due to Carbon Dioxide Enrichment Treatment (플라스틱 온실 내 이산화탄소 시비에 따른 토마토 생육과 생체 반응 및 Plant-induced Electrical Signal 간 관계 분석)

  • Hee Woong Goo;Gyu Won Lee;Wook Jin Song;Do Hyeon Kim;Hyun Jun Park;Kyoung Sub Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.484-491
    • /
    • 2023
  • Tomatoes in greenhouse are a widely cultivated horticultural crop worldwide, accounting for high production and production value. When greenhouse ventilation is minimized during low temperature periods, CO2 enrichment is often used to increase tomato photosynthetic rate and yield. Plant-induced electrical signal (PIES) can be used as a technology to monitor changes in the biological response of crops due to environmental changes by using the principle of measuring the resistance value, or impedance, within the crop. This study was conducted to investigate the relationship between tomato growth data, vital response, and PIES resulting from CO2 enrichment in greenhouse tomatoes. The growth of tomato treated with CO2 enrichment in the morning was significantly better in all items except stem diameter compared to the control, and PIES values were also higher. The growth of tomato continuously applied with CO2 was better in the treatment groups than control, and there was no significant difference in chlorophyll fluorescence and photosynthesis. However, PIES and SPAD values were higher in the CO2 treatment group than control. CO2 enrichment have a direct relationship with PIES, growth increased, and transpiration increased due to the increased leaf area, resulting in increased water absorption, which appears to be reflected in PIES, which measures vascular impedance. Through this, this study suggests that PIES can be used to monitor crops due to environmental changes, and that PIES is a useful method for non-destructively and continuously monitoring changes of crops.

Development of Greenhouse Environment Monitoring & Control System Based on Web and Smart Phone (웹과 스마트폰 기반의 온실 환경 제어 시스템 개발)

  • Kim, D.E.;Lee, W.Y.;Kang, D.H.;Kang, I.C.;Hong, S.J.;Woo, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 2016
  • Monitoring and control of the greenhouse environment play a decisive role in greenhouse crop production processes. The network system for greenhouse control was developed by using recent technologies of networking and wireless communications. In this paper, a remote monitoring and control system for greenhouse using a smartphone and a computer with internet has been developed. The system provides real-time remote greenhouse integrated management service which collects greenhouse environment information and controls greenhouse facilities based on sensors and equipments network. Graphical user interface for an integrated management system was designed with bases on the HMI and the experimental results showed that a sensor data and device status were collected by integrated management in real-time. Because the sensor data and device status can be displayed on a web page, transmitted using the server program to remote computer and mobile smartphone at the same time. The monitored-data can be downloaded, analyzed and saved from server program in real-time via mobile phone or internet at a remote place. Performance test results of the greenhouse control system has confirmed that all work successfully in accordance with the operating conditions. And data collections and display conditions, event actions, crops and equipments monitoring showed reliable results.

EFFCTS OF TILLAGE SYSTEMS ON THE QUALITY OF RUNOFF FROM SLUDGE-AMENDED SOILS

  • Mostaghimi, Saied;Bruggeman, Adriana C.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.984-993
    • /
    • 1993
  • land application of sewage sludge requires careful monitoring because of its potential for contamination of surface water and groundwater. A rainfall simulator was used to investigated the effects of freshly applied sludge on runoff of sediment and nutrients from agricultural crop lands. Rain was applied to 16 experimental field plots. A three run sequence was used to simulate different initial moisture conditions. Runoff, sediment and nutrient losses were monitored at the base of each plot during the simulated rainfall events. Sludge was surface applied and incorporated at conventionally -tilled plots and surface applied at no-till plots, at rates of 0, 75, 150 kg-N/ha. No-till practices greatly reduced runoff, sediment , and nutrient losses form the sludge treated plots, relative to the conventional tillage practices. Incorporation of the sludge was effective in reducing nutrient yields at the conventionally-tilled plots. This effect was more pronounced during the third rain torm, with wet initial conditions. Peak loadings of nutrients appeared during the rainstorm with wet initial conditions.

  • PDF

Development of Meloidogyne arenaria on Oriental Melon (Cucumis melo L.) in Relation to Degree-day Accumulation Under Greenhouse Conditions

  • Kim, Dong-Geun;Yeon, Il-Kwon
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.159-163
    • /
    • 2001
  • Influence of soil temperature [accumulated degree-day for the base temperature $5^{\circ}$($\textrm{DD}_5$)] on the development of Meloidogyne arenaria were studied in a winter grown oriental melon greenhouse in Seongju, Korea. Egg masses were first observed on roots at the accumulation of 565 $\textrm{DD}_5$(40 days after transplanting), suggesting that the nematode has completed the first generation in 40 days. Second-stage juveniles (J2) densities were lowest at 863 $\textrm{DD}_5$ in April, first increased at 1,334 $\textrm{DD}_5$ in May, peaked at 2,951 $\textrm{DD}_5$ in July, and decliner thereafter. Development of egg masses and J2 density in soil revealed that M. arenaria could develop in 7-8 generations in a year in the greenhouse. Degree-day monitoring, therefore, could aid to predict nematode development in soil and can be valuable tool a to develop root-knot nematode control strategies.

  • PDF

Applications of image analysis techniques for the drone photography in water resources engineering (무인항공 촬영 영상분석 기술의 수자원기술 분야 적용)

  • Kim, Hyung Ki;Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.463-467
    • /
    • 2020
  • The main feature of this study is to automatically synthesize square images by sending aerial photographs and images from unmanned aerial vehicles (drons). It may be applicable to the cloud server, and to apply analytical algorithms for the suitable purpose of image processing. Drone imaging analysis is a process that can be used in various fields such as finding contaminated area of green algae, monitoring forest fire, and managing crop cultivation.

Regional Scale Rice Yield Estimation by Using a Time-series of RADARSAT ScanSAR Images

  • Li, Yan;Liao, Qifang;Liao, Shengdong;Chi, Guobin;Peng, Shaolin
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.917-919
    • /
    • 2003
  • This paper demonstrates that RADARSAT ScanSAR data can be an important data source of radar remote sensing for monitoring crop systems and estimation of rice yield for large areas in tropic and sub-tropical regions. Experiments were carried out to show the effectiveness of RADARSAT ScanSAR data for rice yield estimation in whole province of Guangdong, South China. A methodology was developed to deal with a series of issues in extracting rice information from the ScanSAR data, such as topographic influences, levels of agro-management, irregular distribution of paddy fields and different rice cropping systems. A model was provided for rice yield estimation based on the relationship between the backscatter coefficient of multi-temporal SAR data and the biomass of rice.

  • PDF

Reduction of Soil Loss from Sloped Agricultural Field by using Hydrated Lime (소석회를 이용한 급경사 농경지 토양유실 저감)

  • Koh, Il-Ha;Yu, Chan;Park, Mi Jeong;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • The feasibility of using hydrated lime ($Ca(OH)_2$) was assessed in reducing soil loss in sloped land under field condition. During 6-month monitoring from May to October, amendment of hydrated lime (3%, w/w) to a test plot decreased soil loss by 76% as compared to the unamended plot. However, the growth of natural vegetation was hampered by hydrated lime addition due to pH increase. Hydrated lime can be used as an effective agent to prevent soil loss in sloped land, but additional treatments are needed to preserve vegetation growth, especially in crop fields.

Improving water use efficiency in the Upper Central Irrigation Area in Thailand via soil moisture system and local water user training

  • Koontankulvong, Sucharit;Visessri, Supatra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.8-12
    • /
    • 2022
  • Water loss is one of the typical but challenging problems in water management. To reduced water loss or increase water efficiency, the pilot projects were implemented in the TTD's irrigation area. Modern soil moisture technology and local level water user training were conducted together as a mean to achieve improved water efficiency. In terms of technology, soil moisture sensors and monitoring system were used to estimate crop water requirement to reduce unnecessary irrigation. This was found to save 16.47% of irrigated water and 25.20% of irrigation supply. Further improvement of water efficiency was gained by means of local level water user training in which stakeholders were engaged in the network of communications and co-planning. The lessons learnt from the TTD pilot project was translated into good water management practices at local level.

  • PDF

Changes in the Sensitivity to Metalaxyl, Dimethomorph and Ethaboxam of Phytophthora infestans in Korea

  • Zhang, Xuan-Zhe;Ryu, Kyoung-Yul;Kim, Jeom-Soon;Cheon, Jung-Uk;Kim, Byung-Sup
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Changes of control efficacy of chemical to potato late blight caused by Phytophthora infestans in potato fields from 2001 to 2004 were examined. Control efficacy of metalaxyl was suddenly decreased from 100% in 2002 to 50% in 2004 and that of dimethomorph also was similar to those of metalaxyl. However, the control efficacy of ethaboxam no great change. Both A1 and A2 mating type isolates were isolated from 2001 to 2004 in several areas in Korea. The majority of the P. infestans isolates were A1 mating type. Total 939 isolates of P. infestans obtained from several areas in Korea from 2001 to 2004 were examined for changes of sensitivity to metalaxyl. Frequencies of metalaxyl resistance isolates were gradually increased from 17% in 2001 to 84.2% in 2004, but isolation frequencies of metalaxyl sensitive and intermediate resistant isolate were decreased. Cause of decreasing control efficacy of metalaxyl was thought by increase of resistance isolates in A1 mating type population according to increasing metalaxyl use. Most isolates were grown at 0.5 ${\mu}g/ml of dimethomorph and isolates grown at 1 ${\mu}g/ml of dimethomorph were approximately 10.2-22.9%. However, no isolate was able to grow at 5.0 ${\mu}g/ml. Based on these results, minimum inhibitory concentrations (MIC) of dimethomorph to P. infestans were determined to be 0.5-1.0 ${\mu}g/ml. Our results indicated that the reason decreasing control efficacy of dimethomorph was not caused by occurrence of resistant isolates. About 5% and 12.1% isolates among the total isolates collected in 2003 and 2004 were grown on V-8 juice rye agar containing 1.0 ${\mu}g/ml ethaboxam. The 2.1 and 25.4% isolates had MICs of 0.2-0.4 ${\mu}g/ml, and MIC values of 87.9% and 74.3% isolates were less than 0.2 ${\mu}g/ml concentrations of ethaboxam. Therefore, resistance development by P. infestans to ethaboxam is not likely to occur in the natural condition.